Skip to Content
Merck
  • Intron 1 GATA site enhances ALAS2 expression indispensably during erythroid differentiation.

Intron 1 GATA site enhances ALAS2 expression indispensably during erythroid differentiation.

Nucleic acids research (2017-01-27)
Yingchi Zhang, Jingliao Zhang, Wenbin An, Yang Wan, Shihui Ma, Jie Yin, Xichuan Li, Jie Gao, Weiping Yuan, Ye Guo, James Douglas Engel, Lihong Shi, Tao Cheng, Xiaofan Zhu
ABSTRACT

The first intronic mutations in the intron 1 GATA site (int-1-GATA) of 5-aminolevulinate synthase 2 (ALAS2) have been identified in X-linked sideroblastic anemia (XLSA) pedigrees, strongly suggesting it could be causal mutations of XLSA. However, the function of this int-1-GATA site during in vivo development remains largely unknown. Here, we generated mice lacking a 13 bp fragment, including this int-1-GATA site (T AGATAA: AGCCCC) and found that hemizygous deletion led to an embryonic lethal phenotype due to severe anemia resulting from a lack of ALAS2 expression, indicating that this non-coding sequence is indispensable for ALAS2 expression in vivo Further analyses revealed that this int-1-GATA site anchored the GATA site in intron 8 (int-8-GATA) and the proximal promoter, forming a long-range loop to enhance ALAS2 expression by an enhancer complex including GATA1, TAL1, LMO2, LDB1 and Pol II at least, in erythroid cells. However, compared with the int-8-GATA site, the int-1-GATA site is more essential for regulating ALAS2 expression through CRISPR/Cas9-mediated site-specific deletion. Therefore, the int-1-GATA site could serve as a valuable site for diagnosing XLSA in cases with unknown mutations.