Skip to Content
Merck
  • Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster.

Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster.

Oncotarget (2015-09-17)
Anika E Wagner, Stefanie Piegholdt, Doerte Rabe, Nieves Baenas, Anke Schloesser, Manfred Eggersdorfer, Achim Stocker, Gerald Rimbach
ABSTRACT

In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
α-Glucosidase Activity Assay Kit, sufficient for 100 colorimetric tests