- Elucidation of synaptonemal complex organization by super-resolution imaging with isotropic resolution.
Elucidation of synaptonemal complex organization by super-resolution imaging with isotropic resolution.
Synaptonemal complexes (SCs) are meiosis-specific multiprotein complexes that are essential for synapsis, recombination, and segregation of homologous chromosomes, but the molecular organization of SCs remains unclear. We used immunofluorescence labeling in combination with super-resolution imaging and average position determination to investigate the molecular architecture of SCs. Combination of 2D super-resolution images recorded from different areas of the helical ladder-like structure allowed us to reconstruct the 3D molecular organization of the mammalian SC with isotropic resolution. The central element is composed of two parallel cables at a distance of ∼ 100 nm, which are oriented perpendicular to two parallel cables of the lateral element arranged at a distance of ∼ 220 nm. The two parallel cable elements form twisted helical structures that are connected by transversal filaments by their N and C termini. A single-cell preparation generates sufficient localizations to compile a 3D model of the SC with nanometer precision.