Skip to Content
Merck
  • Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors.

Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors.

Nanoscale research letters (2012-01-05)
Mou Pal, Umapada Pal, Justo Miguel Gracia Y Jiménez, Felipe Pérez-Rodríguez
ABSTRACT

Uniform, spherical-shaped TiO2:Eu nanoparticles with different doping concentrations have been synthesized through controlled hydrolysis of titanium tetrabutoxide under appropriate pH and temperature in the presence of EuCl3·6H2O. Through air annealing at 500°C for 2 h, the amorphous, as-grown nanoparticles could be converted to a pure anatase phase. The morphology, structural, and optical properties of the annealed nanostructures were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy [EDS], and UV-Visible diffuse reflectance spectroscopy techniques. Optoelectronic behaviors of the nanostructures were studied using micro-Raman and photoluminescence [PL] spectroscopies at room temperature. EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europium content in the reaction solution. With the increasing dopant concentration, crystallinity and crystallite size of the titania particles decreased gradually. Incorporation of europium in the titania particles induced a structural deformation and a blueshift of their absorption edge. While the room-temperature PL emission of the as-grown samples is dominated by the 5D0 - 7Fj transition of Eu+3 ions, the emission intensity reduced drastically after thermal annealing due to outwards segregation of dopant ions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), dry re-dispersible pellets
Sigma-Aldrich
Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), 0.8% in H2O, conductive inkjet ink