Skip to Content
Merck
  • Competitive adsorption: a physical model for lung surfactant inactivation.

Competitive adsorption: a physical model for lung surfactant inactivation.

Langmuir : the ACS journal of surfaces and colloids (2009-06-19)
Jonathan G Fernsler, Joseph A Zasadzinski
ABSTRACT

Charged, surface-active serum proteins can severely reduce or eliminate the adsorption of lung surfactant from the subphase to the alveolar air-liquid interface via a kinetically controlled competitive adsorption process. The decreased surfactant concentration at the interface leads to higher surface tensions during the compression of the interface during breathing. The correspondence between the factors governing colloid stability and competitive adsorption is validated via a new method of measuring surfactant and serum protein adsorption rates to the air-water interface, using quantitative Brewster angle microscopy (BAM). Competitive adsorption from a 10 mg/mL albumin subphase prevents the adsorption of lung surfactant from even high subphase concentrations due to the fast diffusion of the water-soluble proteins to the interface. The formation of an albumin film causes an electrostatic and steric barrier to subsequent surfactant adsorption, which can destroy the necessary properties of functional lung surfactant: low surface tension during compression and rapid respreading after film collapse. Surfactant inactivation is at least partially due to decreased surfactant adsorption; such decreased adsorption due to the presence of serum proteins may play a role in the development and severity of acute respiratory distress syndrome.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, essentially globulin free, ≥99% (agarose gel electrophoresis)
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, pH 7, ≥98%
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, suitable for RIA, pH 5.2, ≥96%
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, ≥96% (agarose gel electrophoresis)
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, suitable for (for molecular biology), Non-acetylated
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, essentially IgG free, ≥96% (agarose gel electrophoresis)
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, essentially fatty acid free, ≥96% (agarose gel electrophoresis)
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, low endotoxin, BioReagent, suitable for cell culture, ≥98% (agarose gel electrophoresis)
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, pH 5.2, ≥96%
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, lyophilized powder, essentially fatty acid free, ≥98% (agarose gel electrophoresis)
Sigma-Aldrich
Bovine Serum Albumin, powder, BioXtra
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, protease free, pH 7, ≥98%
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, crystallized, ≥98.0% (GE)
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, protease free, fatty acid free, essentially globulin free, pH 7, ≥98%
Sigma-Aldrich
Bovine Serum Albumin, cold ethanol fraction, pH 5.2, ≥96%
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, protease free, suitable for hybridization, pH 7, ≥98%
Sigma-Aldrich
Bovine Serum Albumin, fatty acid free, low endotoxin, lyophilized powder, BioReagent, suitable for cell culture, ≥96% (agarose gel electrophoresis)
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, pH 7, ≥98%
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, protease free, essentially globulin free, pH 7, ≥98%