Skip to Content
Merck

Nonspecific uptake and homeostasis drive the oceanic cadmium cycle.

Proceedings of the National Academy of Sciences of the United States of America (2013-01-31)
Tristan J Horner, Renee B Y Lee, Gideon M Henderson, Rosalind E M Rickaby
ABSTRACT

The global marine distributions of Cd and phosphate are closely correlated, which has led to Cd being considered as a marine micronutrient, despite its toxicity to life. The explanation for this nutrient-like behavior is unknown because there is only one identified biochemical function for Cd, an unusual Cd/Zn carbonic anhydrase. Recent developments in Cd isotope mass spectrometry have revealed that Cd uptake by phytoplankton causes isotopic fractionation in the open ocean and in culture. Here we investigate the physiochemical pathways that fractionate Cd isotopes by performing subcellular Cd isotope analysis on genetically modified microorganisms. We find that expression of the Cd/Zn carbonic anhydrase makes no difference to the Cd isotope composition of whole cells. Instead, a large proportion of the Cd is partitioned into cell membranes with a similar direction and magnitude of Cd isotopic fractionation to that seen in surface seawater. This observation is well explained if Cd is mistakenly imported with other divalent metals and subsequently managed by binding within the cell to avoid toxicity. This process may apply to other divalent metals, whereby nonspecific uptake and subsequent homeostasis may contribute to elemental and isotopic distributions in seawater, even for elements commonly considered as micronutrients.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Carbonic Anhydrase II human, recombinant, expressed in E. coli, buffered aqueous solution
Sigma-Aldrich
Carbonic Anhydrase II bovine, ≥90% (SDS-PAGE), recombinant, expressed in E. coli, ≥5,000 units/mg protein, buffered aqueous solution
Sigma-Aldrich
Carbonic Anhydrase Isozyme II human, ≥80%, powder, ≥3,000 W-A units/mg protein
Supelco
Carbonic Anhydrase I from human erythrocytes, Isoelectric focusing marker, pI 6.6
Sigma-Aldrich
Carbonic Anhydrase I from human erythrocytes