- Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome.
Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome.
Genomic regions free of nucleosomes, which are hypersensitive to DNase I digestion, are known as DNase I hypersensitive sites (DHSs) and frequently contain cis-regulatory DNA elements. To investigate their prevalence and characteristics in maize (Zea mays), we developed high-resolution genome-wide DHS maps using a modified DNase-seq technique. Maize DHSs exhibit depletion of nucleosomes and low levels of DNA methylation and are enriched with conserved noncoding sequences (CNSs). We developed a protoplast-based transient transformation assay to assess the potential gene expression enhancer and/or promoter functions associated with DHSs, which showed that more than 80% of DHSs overlapping with CNSs showed an enhancer function. Strikingly, nearly 25% of maize DHSs were derived from transposable elements (TEs), including both class I and class II transposons. Interestingly, TE-derived DHSs (teDHSs) homologous to retrotransposons were enriched with sequences related to the intrinsic cis-regulatory elements within the long terminal repeats of retrotransposons. We demonstrate that more than 80% of teDHSs can drive transcription of a reporter gene in protoplast assays. These results reveal the widespread occurrence of TE-derived cis-regulatory sequences and suggest that teDHSs play a major role in transcriptional regulation in maize.