Skip to Content
Merck
  • Chromosome remodeling related to hepatitis B virus replication in HepG2 cells.

Chromosome remodeling related to hepatitis B virus replication in HepG2 cells.

DNA and cell biology (2011-02-25)
Qian Gong, Shu Chen, Jinjun Guo, Hang Sun, Guoxing Zheng, Qi Liu, Hong Ren, Song He
ABSTRACT

Hepatitis B Virus (HBV) covalently closed circular DNA (cccDNA) is the main replicative intermediate of HBV and is organized into minichromosomes by the interaction with histone and nonhistone proteins. The remodeling of HBV minichromosomes such as post-translational modifications of histone proteins plays an important role in regulating HBV replication. To determine whether other remodeling occurs in addition to acetylation of cccDNA-bound H3 histones in the presence of HBV replication, a cell culture replication model of HBV was used to assess the dynamic status of acetylation, phosphorylation, and methylation of cccDNA-bound H3 histones at various times after transient transfection of linear HBV DNA into human hepatoma, HepG2 cells. H3 histones bound to cccDNA were found to be phosphorylated, mono-methylated, and acetylated in HepG2 cells containing replicating HBV. The acetylation and methylation status of H3 histones bound to cccDNA paralleled HBV replication. Our results demonstrate that phosphorylation and methylation occur in the remodeling of HBV minichromosomes during HBV replication. The modifications of cccDNA-bound H3 histones were associated with the level of HBV replication. These findings suggest that alterations in the extent of minichromosome remodeling might be a potential target to inhibit HBV replication in the development of effective novel antiviral agents.