Skip to Content
Merck
  • Controlling photochromism between fluoroalkyl end-capped oligomer/polyaniline and N,N'-diphenyl-1,4-phenylenediamine nanocomposites induced by UV-light-responsive titanium oxide nanoparticles.

Controlling photochromism between fluoroalkyl end-capped oligomer/polyaniline and N,N'-diphenyl-1,4-phenylenediamine nanocomposites induced by UV-light-responsive titanium oxide nanoparticles.

Journal of colloid and interface science (2011-05-03)
Hideo Sawada, Taiki Tsuzuki-ishi, Tetsushi Kijima, Jun Kawakami, Mari Iizuka, Masato Yoshida
ABSTRACT

Colloidal stable fluoroalkyl end-capped 2-(methacryloyloxy)ethanesulfonic acid oligomer [R(F)-(MES)(n)-R(F)]/polyaniline[PAn]/TiO(2) nanocomposites and R(F)-(MES)(n)-R(F)/An-dimer (An-dimer: N,N'-diphenyl-1,4-phenylenediamine)/TiO(2) nanocomposites were prepared by the interactions of TiO(2) nanoparticles with R(F)-(MES)(n)-R(F)/PAn nanocomposites or R(F)-(MES)(n)-R(F)/An-dimer nanocomposites, which were prepared by the composite reaction of R(F)-(MES)(n)-R(F) oligomer with PAn or An-dimer. These two types of fluorinated TiO(2) nanocomposites can exhibit quite different photochromic behaviors: R(F)-(MES)(n)-R(F)/PAn/TiO(2) nanocomposites can exhibit a reversible wavelength change for polaron absorptions around 760-820 nm by alternation of UV irradiation and storage in the dark; in contrast, R(F)-(MES)(n)-R(F)/An-dimer/TiO(2) nanocomposites can exhibit a reversible color change from blue to colorless (a reversible absorbance change) by the similar treatment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
N,N′-Diphenyl-p-phenylenediamine, 98%