Skip to Content
Merck
  • Effect of the norepinephrine transporter (NET) inhibition on μ-opioid receptor (MOR)-induced anti-nociception in a bone cancer pain model.

Effect of the norepinephrine transporter (NET) inhibition on μ-opioid receptor (MOR)-induced anti-nociception in a bone cancer pain model.

Journal of pharmacological sciences (2014-06-27)
Hiroko Ono, Atsushi Nakamura, Tomoe Kanbara, Kazuhisa Minami, Shunji Shinohara, Gaku Sakaguchi, Toshiyuki Kanemasa
ABSTRACT

Although norepinephrine transporter (NET) inhibition has an additional effect on μ-opioid receptor (MOR)-mediated anti-nociception in inflammatory and neuropathic pain, its effect on cancer pain is not well characterized. We investigated the additional effect of NET inhibition on MOR activation using a mouse femur bone cancer (FBC) pain model by comparing the anti-nociceptive effect of the dual-acting opioids tramadol and tapentadol and the clinically used MOR-targeted opioids oxycodone and morphine. The anti-nociceptive effects of subcutaneously administered opioids were assessed using the von-Frey filament test. Oxycodone (1 - 10 mg/kg) and morphine (5 - 50 mg/kg) dose-dependently exhibited potent anti-nociceptive effects, whereas tramadol (10 - 56 mg/kg) and tapentadol (10 - 30 mg/kg) exhibited partial effects. Rota-rod analyses of tapentadol at a higher dose (> 30 mg/kg) showed a significant decrease in motor coordination, which was partially recovered by pretreatment with MOR or α(1)-adrenoceptor antagonists. The partial anti-nociceptive effect of tapentadol (30 mg/kg) was completely suppressed by a MOR antagonist, but not by α(1)- or α(2)-adrenoceptor antagonists, suggesting that neither α(1)-adrenoceptor- nor α(2)-adrenoceptor-mediated pathways are involved in anti-nociception in the FBC model. We conclude that addition of NET inhibition does not contribute to MOR-mediated anti-nociception in bone cancer pain.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
α-D-Glucose, anhydrous, 96%
Sigma-Aldrich
Glucose solution, BioUltra, for molecular biology, ~20% in H2O
Sigma-Aldrich
Oxaliplatin, powder
Supelco
Oxycodone hydrochloride, analytical standard
Sigma-Aldrich
D-(+)-Glucose solution, 100 g/L in H2O, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
D-(+)-Glucose solution, 45% in H2O, sterile-filtered, BioXtra, suitable for cell culture
Supelco
D-(+)-Glucose solution, 1 mg/mL in 0.1% benzoic acid, standard for enzymatic assay kits GAGO20, GAHK20, STA20, analytical standard
Oxaliplatin, European Pharmacopoeia (EP) Reference Standard
Tramadol hydrochloride, European Pharmacopoeia (EP) Reference Standard
Supelco
Oxaliplatin, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Oxaliplatin, United States Pharmacopeia (USP) Reference Standard