Skip to Content
Merck
All Photos(1)

Documents

Y0000167

Benzyl alcohol

European Pharmacopoeia (EP) Reference Standard

Synonym(s):

Benzenemethanol

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
C6H5CH2OH
CAS Number:
Molecular Weight:
108.14
Beilstein:
878307
MDL number:
UNSPSC Code:
41116107
PubChem Substance ID:
NACRES:
NA.24

grade

pharmaceutical primary standard

Agency

EP Reference Standard

vapor density

3.7 (vs air)

vapor pressure

13.3 mmHg ( 100 °C)
3.75 mmHg ( 77 °C)

API family

benzalkonium chloride

autoignition temp.

817 °F

manufacturer/tradename

EDQM

refractive index

n20/D 1.539 (lit.)

bp

203-205 °C (lit.)

mp

−16-−13 °C (lit.)

density

1.045 g/mL at 25 °C (lit.)

application(s)

pharmaceutical (small molecule)

format

neat

storage temp.

2-8°C

SMILES string

OCc1ccccc1

InChI

1S/C7H8O/c8-6-7-4-2-1-3-5-7/h1-5,8H,6H2

InChI key

WVDDGKGOMKODPV-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

This product is provided as delivered and specified by the issuing Pharmacopoeia. All information provided in support of this product, including SDS and any product information leaflets have been developed and issued under the Authority of the Issuing Pharmacopoeia. For further information and support please go to the website of the issuing Pharmacopoeia.

Application

Benzyl alcohol EP Reference standard, intended for use in laboratory tests only as specifically prescribed in the European Pharmacopoeia.

Packaging

The product is delivered as supplied by the issuing Pharmacopoeia. For the current unit quantity, please visit the EDQM reference substance catalogue.

Other Notes

Sales restrictions may apply.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Eye Irrit. 2

Storage Class Code

10 - Combustible liquids

WGK

WGK 1

Flash Point(F)

213.8 °F - DIN 51758

Flash Point(C)

101 °C - DIN 51758


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Béatrice Hechler et al.
The Journal of pharmacology and experimental therapeutics, 314(1), 232-243 (2005-03-29)
Our aim was to determine whether the newly described P2X1 antagonist NF449 [4,4',4'',4'''-(carbonylbis(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakis-benzene-1,3-disulfonic acid octasodium salt] could selectively antagonize the platelet P2X1 receptor and how it affected platelet function. NF449 inhibited alpha,beta-methyleneadenosine 5'-triphosphate-induced shape change (IC50 = 83 +/- 13
Jian Zhu et al.
Journal of the American Chemical Society, 135(12), 4719-4721 (2013-03-19)
We describe the use of benzyl alcohols in a solvothermal/alcoholysis reaction to form nanocrystalline sheets of anatase titania. By tuning the reaction conditions, we adjust the size of the nanosheets. The type and density of benzyl groups that decorate the
Yuma Morimoto et al.
Inorganic chemistry, 51(18), 10025-10036 (2012-09-08)
The rate of oxidation of 2,5-dimethoxybenzyl alcohol (2,5-(MeO)(2)C(6)H(3)CH(2)OH) by [Fe(IV)(O)(N4Py)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) was enhanced significantly in the presence of Sc(OTf)(3) (OTf(-) = trifluoromethanesulfonate) in acetonitrile (e.g., 120-fold acceleration in the presence of Sc(3+)). Such a remarkable enhancement of the
Meenakshisundaram Sankar et al.
ACS nano, 6(8), 6600-6613 (2012-07-10)
We report a convenient excess anion modification and post-reduction step to the impregnation method which permits the reproducible preparation of supported bimetallic AuPd nanoparticles having a tight particle size distribution comparable to that found for sol-immobilization materials but without the
I H Blank et al.
The Journal of investigative dermatology, 85(6), 522-526 (1985-12-01)
Although it is known that benzene may be absorbed from inhaled air, the amount that may enter the system by percutaneous absorption is less well established. We have measured the penetration of benzene through human abdominal skin in vitro from

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service