Skip to Content
Merck
  • Rho-kinase inhibition ameliorates metabolic disorders through activation of AMPK pathway in mice.

Rho-kinase inhibition ameliorates metabolic disorders through activation of AMPK pathway in mice.

PloS one (2014-11-05)
Kazuki Noda, Sota Nakajima, Shigeo Godo, Hiroki Saito, Shohei Ikeda, Toru Shimizu, Budbazar Enkhjargal, Yoshihiro Fukumoto, Sohei Tsukita, Tetsuya Yamada, Hideki Katagiri, Hiroaki Shimokawa
ABSTRACT

Metabolic disorders, caused by excessive calorie intake and low physical activity, are important cardiovascular risk factors. Rho-kinase, an effector protein of the small GTP-binding protein RhoA, is an important cardiovascular therapeutic target and its activity is increased in patients with metabolic syndrome. We aimed to examine whether Rho-kinase inhibition improves high-fat diet (HFD)-induced metabolic disorders, and if so, to elucidate the involvement of AMP-activated kinase (AMPK), a key molecule of metabolic conditions. Mice were fed a high-fat diet, which induced metabolic phenotypes, such as obesity, hypercholesterolemia and glucose intolerance. These phenotypes are suppressed by treatment with selective Rho-kinase inhibitor, associated with increased whole body O2 consumption and AMPK activation in the skeletal muscle and liver. Moreover, Rho-kinase inhibition increased mRNA expression of the molecules linked to fatty acid oxidation, mitochondrial energy production and glucose metabolism, all of which are known as targets of AMPK in those tissues. In systemic overexpression of dominant-negative Rho-kinase mice, body weight, serum lipid levels and glucose metabolism were improved compared with littermate control mice. Furthermore, in AMPKα2-deficient mice, the beneficial effects of fasudil, a Rho-kinase inhibitor, on body weight, hypercholesterolemia, mRNA expression of the AMPK targets and increase of whole body O2 consumption were absent, whereas glucose metabolism was restored by fasudil to the level in wild-type mice. In cultured mouse myocytes, pharmacological and genetic inhibition of Rho-kinase increased AMPK activity through liver kinase b1 (LKB1), with up-regulation of its targets, which effects were abolished by an AMPK inhibitor, compound C. These results indicate that Rho-kinase inhibition ameliorates metabolic disorders through activation of the LKB1/AMPK pathway, suggesting that Rho-kinase is also a novel therapeutic target of metabolic disorders.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methyl-β-D-thiogalactoside
Sigma-Aldrich
Trimethylgallium, packaged for use in deposition systems
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide, pkg of 10 mg (per vial)
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide, pkg of 20 mg (per vial)
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide, pkg of 50 mg (per vial)
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, ≥95% (HPLC)
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, purified by column chromatography, ≥99%
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, Grade AA-1
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, ≥99%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide lithium salt from Saccharomyces cerevisiae, ≥95%
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, ≥98%, BioUltra, from yeast
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, ≥96.5% (HPLC), ≥96.5% (spectrophotometric assay), from yeast
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, suitable for cell culture, ≥96.5% (HPLC), ≥96.5% (spectrophotometric assay), from yeast
Supelco
Dimethyl sulfoxide, analytical standard
Supelco
Dimethyl sulfoxide, for inorganic trace analysis, ≥99.99995% (metals basis)
Dimethyl sulfoxide, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
USP
Dimethyl sulfoxide, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%