Skip to Content
Merck
  • Microencapsulated bile salt hydrolase producing Lactobacillus reuteri for oral targeted delivery in the gastrointestinal tract.

Microencapsulated bile salt hydrolase producing Lactobacillus reuteri for oral targeted delivery in the gastrointestinal tract.

Applied microbiology and biotechnology (2008-08-23)
Christopher Martoni, Jasmine Bhathena, Aleksandra Malgorzata Urbanska, Satya Prakash
ABSTRACT

This is the first study of its kind to screen probiotic lactic acid bacteria for the purpose of microencapsulating a highly bile salt hydrolase (BSH)-active strain. A Lactobacillus reuteri strain and a Bifidobacterium longum strain were isolated as the highest BSH producers among the candidates. Microcapsules were prepared with a diameter of 619 +/- 31 mum and a cell load of 5 x 10(9) cfu/ml. Post de Man, Rogosa, and Sharpe broth-acid challenge, L. reuteri microcapsules metabolized glyco- and tauro-conjugated bile salts at rates of 10.16 +/- 0.46 and 1.85 +/- 0.33 micromol/g microcapsule per hour, respectively, over the first 2 h. Microencapsulated B. longum had minimal BSH activity and were significantly (P < 0.05) more susceptible to acid challenge. Further testing of L. reuteri microcapsules in a simulated human gastrointestinal (GI) model showed an improved rate, with 49.4 +/- 6.21% of glyco-conjugates depleted after 60 min and complete deconjugation after 4 h. Microcapsules protected the encased cells in the simulated stomach maintaining L. reuteri viability above 10(9), 10(8), and 10(6) cfu/ml after 2 h at pH 3.0, 2.5, and 2.0, respectively. Results show excellent potential for this highly BSH-active microencapsulation system in vitro, highlighted by improved viability and substrate utilization in simulated GI transit.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Choloylglycine Hydrolase from Clostridium perfringens (C. welchii), lyophilized powder, ≥100 units/mg protein