Skip to Content
Merck
  • The Cholesteryl Ester Transfer Protein Inhibitor, des-Fluoro-Anacetrapib, Prevents Vein Bypass-induced Neointimal Hyperplasia in New Zealand White Rabbits.

The Cholesteryl Ester Transfer Protein Inhibitor, des-Fluoro-Anacetrapib, Prevents Vein Bypass-induced Neointimal Hyperplasia in New Zealand White Rabbits.

Scientific reports (2019-11-09)
Ben J Wu, Yue Li, Kwok-Leung Ong, Yidan Sun, Douglas Johns, Philip J Barter, Kerry-Anne Rye
ABSTRACT

Coronary artery bypass grafting is among the most commonly performed of all cardiovascular surgical procedures. However, graft failure due to stenosis reduces the long-term benefit of the intervention. This study asks if elevating plasma high density lipoprotein cholesterol (HDL-C) levels by inhibition of cholesteryl ester transfer protein (CETP) activity with des-fluoro-anacetrapib, an analog of the CETP inhibitor anacetrapib, prevents vein bypass-induced neointimal hyperplasia. NZW rabbits were placed on a normal chow diet or chow containing 0.14% (wt/wt) des-fluoro-anacetrapib for 6 weeks. Bypass grafting of the jugular vein to the common carotid artery was performed 2 weeks after starting dietary des-fluoro-anacetrapib supplementation. The animals were euthanised 4 weeks post-bypass grafting. Relative to control, dietary supplementation with des-fluoro-anacetrapib reduced plasma CETP activity by 89 ± 6.9%, increased plasma apolipoprotein A-I levels by 24 ± 5.5%, increased plasma HDL-C levels by 93 ± 26% and reduced intimal hyperplasia in the grafted vein by 38 ± 6.2%. Des-fluoro-anacetrapib treatment was also associated with decreased bypass grafting-induced endothelial expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), endothelial dysfunction, and smooth muscle cell (SMC) proliferation in the grafted vein. In conclusion, increasing HDL-C levels by inhibiting CETP activity is associated with inhibition of intimal hyperplasia in grafted veins, reduced inflammatory responses, improved endothelial function, and decreased SMC proliferation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Krebs-Henseleit Buffer Modified, With 2000 mg/L glucose, without calcium chloride and sodium bicarbonate, powder, suitable for cell culture
Sigma-Aldrich
Acetylcholine chloride, ≥99% (TLC)
Sigma-Aldrich
(R)-(−)-Phenylephrine hydrochloride, powder
Sigma-Aldrich
Acetylcholine chloride, ≥99% (TLC), free-flowing, Redi-Dri
Sigma-Aldrich
Sodium nitroprusside dihydrate, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%