Skip to Content
Merck
  • GAPDH Expression Predicts the Response to R-CHOP, the Tumor Metabolic Status, and the Response of DLBCL Patients to Metabolic Inhibitors.

GAPDH Expression Predicts the Response to R-CHOP, the Tumor Metabolic Status, and the Response of DLBCL Patients to Metabolic Inhibitors.

Cell metabolism (2019-03-05)
Johanna Chiche, Julie Reverso-Meinietti, Annabelle Mouchotte, Camila Rubio-Patiño, Rana Mhaidly, Elodie Villa, Jozef P Bossowski, Emma Proics, Manuel Grima-Reyes, Agnès Paquet, Konstantina Fragaki, Sandrine Marchetti, Josette Briere, Damien Ambrosetti, Jean-François Michiels, Thierry Jo Molina, Christiane Copie-Bergman, Jacqueline Lehmann-Che, Isabelle Peyrottes, Frederic Peyrade, Eric de Kerviler, Bruno Taillan, Georges Garnier, Els Verhoeyen, Véronique Paquis-Flucklinger, Laetitia Shintu, Vincent Delwail, Celine Delpech-Debiais, Richard Delarue, André Bosly, Tony Petrella, Gabriel Brisou, Bertrand Nadel, Pascal Barbry, Nicolas Mounier, Catherine Thieblemont, Jean-Ehrland Ricci
ABSTRACT

Diffuse large B cell lymphoma (DLBCL) is a heterogeneous disease treated with anti-CD20-based immuno-chemotherapy (R-CHOP). We identified that low levels of GAPDH predict a poor response to R-CHOP treatment. Importantly, we demonstrated that GAPDHlow lymphomas use OxPhos metabolism and rely on mTORC1 signaling and glutaminolysis. Consistently, disruptors of OxPhos metabolism (phenformin) or glutaminolysis (L-asparaginase) induce cytotoxic responses in GAPDHlow B cells and improve GAPDHlow B cell-lymphoma-bearing mice survival, while they are low or not efficient on GAPDHhigh B cell lymphomas. Ultimately, we selected four GAPDHlow DLBCL patients, who were refractory to all anti-CD20-based therapies, and targeted DLBCL metabolism using L-asparaginase (K), mTOR inhibitor (T), and metformin (M) (called KTM therapy). Three out of the four patients presented a complete response upon one cycle of KTM. These findings establish that the GAPDH expression level predicts DLBCL patients' response to R-CHOP treatment and their sensitivity to specific metabolic inhibitors.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, ≥98% (TLC), powder
Sigma-Aldrich
Sodium succinate dibasic hexahydrate, ReagentPlus®, ≥99%
Sigma-Aldrich
Collagenase from Clostridium histolyticum, Type IA, 0.5-5.0 FALGPA units/mg solid, ≥125 CDU/mg solid, For general use
Sigma-Aldrich
Lithium L-lactate, ≥98% (titration)
Supelco
Phenformin hydrochloride, analytical standard
Sigma-Aldrich
Actinomycin D, from Streptomyces sp., suitable for cell culture, ≥95%
Sigma-Aldrich
Sodium iodoacetate, ≥98%, BioUltra
Sigma-Aldrich
L-(−)-Malic acid disodium salt, ≥95% (titration)
Sigma-Aldrich
Sodium carbonate, ReagentPlus®, ≥99.5%
Supelco
Phenformin Hydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose, ≥97% (HPLC)
Sigma-Aldrich
Temsirolimus, ≥98% (HPLC)
Sigma-Aldrich
L-Asparagine, ≥98% (HPLC)
Sigma-Aldrich
α-(Methylamino)isobutyric acid, ≥97% (titration)
Sigma-Aldrich
L-Lactic Dehydrogenase from rabbit muscle, Type II, ammonium sulfate suspension, 800-1,200 units/mg protein
Sigma-Aldrich
Oligomycin from Streptomyces diastatochromogenes, ≥90% total oligomycins basis (HPLC)
Sigma-Aldrich
Rotenone, ≥95%
Sigma-Aldrich
Antimycin A from Streptomyces sp.
Sigma-Aldrich
Adenosine 5′-diphosphate sodium salt, bacterial, ≥95% (HPLC)
Sigma-Aldrich
L-Glutamic acid monosodium salt hydrate, ≥99% (HPLC), powder
Sigma-Aldrich
Digitonin, ~50% (TLC)
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, purified by column chromatography, ≥99%
Sigma-Aldrich
DAPI, for nucleic acid staining