Skip to Content
Merck
  • Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex.

Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex.

The EMBO journal (2021-08-26)
Fabio Da Silva, Kaiqing Zhang, Anneline Pinson, Edoardo Fatti, Michaela Wilsch-Bräuninger, Jessica Herbst, Valerie Vidal, Andreas Schedl, Wieland B Huttner, Christof Niehrs
ABSTRACT

The role of WNT/β-catenin signalling in mouse neocortex development remains ambiguous. Most studies demonstrate that WNT/β-catenin regulates progenitor self-renewal but others suggest it can also promote differentiation. Here we explore the role of WNT/STOP signalling, which stabilizes proteins during G2/M by inhibiting glycogen synthase kinase (GSK3)-mediated protein degradation. We show that mice mutant for cyclin Y and cyclin Y-like 1 (Ccny/l1), key regulators of WNT/STOP signalling, display reduced neurogenesis in the developing neocortex. Specifically, basal progenitors, which exhibit delayed cell cycle progression, were drastically decreased. Ccny/l1-deficient apical progenitors show reduced asymmetric division due to an increase in apical-basal astral microtubules. We identify the neurogenic transcription factors Sox4 and Sox11 as direct GSK3 targets that are stabilized by WNT/STOP signalling in basal progenitors during mitosis and that promote neuron generation. Our work reveals that WNT/STOP signalling drives cortical neurogenesis and identifies mitosis as a critical phase for neural progenitor fate.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
GSK-3 Inhibitor XVI, GSK-3 Inhibitor XVI - CAS 252917-06-9, is a cell-permeable, potent, ATP-competitive, and highly selective GSK-3 inhibitor (IC₅₀ = 10 and 6.7 nM against GSK-3α and GSK-3β, respectively).
Sigma-Aldrich
Epidermal Growth Factor from murine submaxillary gland, EGF, suitable for cell culture
Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)
Millipore
ANTI-FLAG® M2 Affinity Gel, purified immunoglobulin, buffered aqueous glycerol solution