Skip to Content
MilliporeSigma
  • Protein kinase A activation by the anti-cancer drugs ABT-737 and thymoquinone is caspase-3-dependent and correlates with platelet inhibition and apoptosis.

Protein kinase A activation by the anti-cancer drugs ABT-737 and thymoquinone is caspase-3-dependent and correlates with platelet inhibition and apoptosis.

Cell death & disease (2017-07-01)
Natalia Rukoyatkina, Elke Butt, Hariharan Subramanian, Viacheslav O Nikolaev, Igor Mindukshev, Ulrich Walter, Stepan Gambaryan, Peter M Benz
ABSTRACT

Chemotherapy-induced thrombocytopenia is a common bleeding risk in cancer patients and limits chemotherapy dose and frequency. Recent data from mouse and human platelets revealed that activation of protein kinase A/G (PKA/PKG) not only inhibited thrombin/convulxin-induced platelet activation but also prevented the platelet pro-coagulant state. Here we investigated whether or not PKA/PKG activation could attenuate caspase-dependent apoptosis induced by the anti-cancer drugs ABT-737 (the precursor of navitoclax) and thymoquinone (TQ), thereby potentially limiting chemotherapy-induced thrombocytopenia. This is particularly relevant as activation of cyclic nucleotide signalling in combination chemotherapy is an emerging strategy in cancer treatment. However, PKA/PKG-activation, as monitored by phosphorylation of Vasodilator-stimulated phosphoprotein (VASP), did not block caspase-3-dependent platelet apoptosis induced by the compounds. In contrast, both substances induced PKA activation themselves and PKA activation correlated with platelet inhibition and apoptosis. Surprisingly, ABT-737- and TQ-induced VASP-phosphorylation was independent of cAMP levels and neither cyclases nor phosphatases were affected by the drugs. In contrast, however, ABT-737- and TQ-induced PKA activation was blocked by caspase-3 inhibitors. In conclusion, we show that ABT-737 and TQ activate PKA in a caspase-3-dependent manner, which correlates with platelet inhibition and apoptosis and therefore potentially contributes to the bleeding risk in chemotherapy patients.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one, powder
Sigma-Aldrich
Rp-8-Bromo-β-phenyl-1,N2-ethenoguanosine 3′,5′-cyclic monophosphorothioate sodium salt, ≥98% (HPLC), powder