Skip to Content
MilliporeSigma
  • Fluid shear stress upregulates placental growth factor in the vessel wall via NADPH oxidase 4.

Fluid shear stress upregulates placental growth factor in the vessel wall via NADPH oxidase 4.

American journal of physiology. Heart and circulatory physiology (2015-09-27)
Nabil A Rashdan, Pamela G Lloyd
ABSTRACT

Placental growth factor (PLGF), a potent stimulator of arteriogenesis, is upregulated during outward arterial remodeling. Increased fluid shear stress (FSS) is a key physiological stimulus for arteriogenesis. However, the role of FSS in regulating PLGF expression is unknown. To test the hypothesis that FSS regulates PLGF expression in vascular cells and to identify the signaling pathways involved, human coronary artery endothelial cells (HCAEC) and human coronary artery smooth muscle cells were cultured on either side of porous Transwell inserts. HCAEC were then exposed to pulsatile FSS of 0.07 Pa ("normal," mimicking flow through quiescent collaterals), 1.24 Pa ("high," mimicking increased flow in remodeling collaterals), or 0.00 Pa ("static") for 2 h. High FSS increased secreted PLGF protein ∼1.4-fold compared with static control (n = 5, P < 0.01), while normal FSS had no significant effect on PLGF. Similarly, high flow stimulated PLGF mRNA expression nearly twofold in isolated mouse mesenteric arterioles. PLGF knockdown using siRNA revealed that HCAEC were the primary source of PLGF in cocultures (n = 5, P < 0.01). Both H2O2 and nitric oxide production were increased by FSS compared with static control (n = 5, P < 0.05). N(G)-nitro-l-arginine methyl ester (100 μM) had no significant effect on the FSS-induced increase in PLGF. In contrast, both catalase (500 U/ml) and diphenyleneiodonium (5 μM) attenuated the effects of FSS on PLGF protein in cocultures. Diphenyleneiodonium also blocked the effect of high flow to upregulate PLGF mRNA in isolated arterioles. Further studies identified NADPH oxidase 4 as a source of reactive oxygen species for this pathway. We conclude that FSS regulates PLGF expression via NADPH oxidase 4 and reactive oxygen species signaling.

MATERIALS
Product Number
Brand
Product Description

SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Nox4
Sigma-Aldrich
Hydrogen peroxide solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Magnesium sulfate, puriss. p.a., drying agent, anhydrous, ≥98.0% (KT), powder (very fine)
Sigma-Aldrich
Magnesium sulfate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Magnesium sulfate, anhydrous, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Magnesium sulfate solution, BioUltra, for molecular biology
Sigma-Aldrich
Magnesium sulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Magnesium sulfate, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Magnesium sulfate solution, for molecular biology, 1.00 M±0.04 M
Sigma-Aldrich
MISSION® esiRNA, targeting human NOX4
Sigma-Aldrich
Magnesium sulfate, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥97%
Sigma-Aldrich
Magnesium sulfate, anhydrous, reagent grade, ≥97%