Skip to Content
MilliporeSigma

Magnetic levitational bioassembly of 3D tissue construct in space.

Science advances (2020-08-04)
Vladislav A Parfenov, Yusef D Khesuani, Stanislav V Petrov, Pavel A Karalkin, Elizaveta V Koudan, Elizaveta K Nezhurina, Frederico DAS Pereira, Alisa A Krokhmal, Anna A Gryadunova, Elena A Bulanova, Igor V Vakhrushev, Igor I Babichenko, Vladimir Kasyanov, Oleg F Petrov, Mikhail M Vasiliev, Kenn Brakke, Sergei I Belousov, Timofei E Grigoriev, Egor O Osidak, Ekaterina I Rossiyskaya, Ludmila B Buravkova, Oleg D Kononenko, Utkan Demirci, Vladimir A Mironov
ABSTRACT

Magnetic levitational bioassembly of three-dimensional (3D) tissue constructs represents a rapidly emerging scaffold- and label-free approach and alternative conceptual advance in tissue engineering. The magnetic bioassembler has been designed, developed, and certified for life space research. To the best of our knowledge, 3D tissue constructs have been biofabricated for the first time in space under microgravity from tissue spheroids consisting of human chondrocytes. Bioassembly and sequential tissue spheroid fusion presented a good agreement with developed predictive mathematical models and computer simulations. Tissue constructs demonstrated good viability and advanced stages of tissue spheroid fusion process. Thus, our data strongly suggest that scaffold-free formative biofabrication using magnetic fields is a feasible alternative to traditional scaffold-based approaches, hinting a new perspective avenue of research that could significantly advance tissue engineering. Magnetic levitational bioassembly in space can also advance space life science and space regenerative medicine.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Paraformaldehyde, reagent grade, crystalline
Sigma-Aldrich
Resazurin sodium salt, powder, BioReagent
Sigma-Aldrich
Toluidine Blue, 8.74% (ZN (THEORY)), for microscopy (Hist., Vit.)
MicroTissues® 3D Petri Dish® micro-mold spheroids, size L, 9 x 9 array, fits 12 well plates