Skip to Content
MilliporeSigma

Reduction of cysteine-S-protecting groups by triisopropylsilane.

Journal of peptide science : an official publication of the European Peptide Society (2018-10-26)
Emma J Ste Marie, Robert J Hondal
ABSTRACT

Triisopropylsilane (TIS), a hindered hydrosilane, has long been utilized as a cation scavenger for the removal of amino acid protecting groups during peptide synthesis. However, its ability to actively remove S-protecting groups by serving as a reductant has largely been mischaracterized by the peptide community. Here, we provide strong evidence that TIS can act as a reducing agent to facilitate the removal of acetamidomethyl (Acm), 4-methoxybenzyl (Mob), and tert-butyl (But ) protecting groups from cysteine (Cys) residues in the presence of trifluoroacetic acid (TFA) at 37 °C. The lability of the Cys protecting groups in TFA/TIS (98/2) in this study are in the order: Cys(Mob) > Cys(Acm) > Cys(But ), with Cys(Mob) being especially labile. Unexpectedly, we found that TIS promoted disulfide formation in addition to aiding in the removal of the protecting group. Our results raise the possibility of using TIS in orthogonal deprotection strategies of Cys-protecting groups following peptide synthesis as TIS can be viewed as a potential deprotection agent instead of merely a scavenger in deprotection cocktails based on our results. We also tested other common scavengers under these reaction conditions and found that thioanisole and triethylsilane were similarly effective as TIS in enhancing deprotection and catalyzing disulfide formation. Our findings reported herein show that careful consideration should be given to the type of scavenger used when it is desirable to preserve the Cys-protecting group. Additional consideration should be given to the concentration of scavenger, temperature of the reaction, and reaction time.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Chlorotrityl chloride, ≥97.0% (AT)
Sigma-Aldrich
Triethylsilane, 99%
Sigma-Aldrich
Triisopropylsilane, 98%