跳转至内容
Merck
  • The effects on bronchial epithelial mucociliary cultures of coarse, fine, and ultrafine particulate matter from an underground railway station.

The effects on bronchial epithelial mucociliary cultures of coarse, fine, and ultrafine particulate matter from an underground railway station.

Toxicological sciences : an official journal of the Society of Toxicology (2015-02-13)
Matthew Loxham, Rebecca J Morgan-Walsh, Matthew J Cooper, Cornelia Blume, Emily J Swindle, Patrick W Dennison, Peter H Howarth, Flemming R Cassee, Damon A H Teagle, Martin R Palmer, Donna E Davies
摘要

We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1-11.1 µg/cm(2)) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research.

材料
货号
品牌
产品描述

Sigma-Aldrich
N-乙酰基-L-半胱氨酸, BioReagent, suitable for cell culture
Sigma-Aldrich
硒, powder, −100 mesh, 99.99% trace metals basis
Sigma-Aldrich
N-乙酰基-L-半胱氨酸, Sigma Grade, ≥99% (TLC), powder
Sigma-Aldrich
硒, powder, −100 mesh, ≥99.5% trace metals basis
Sigma-Aldrich
N-乙酰基-L-半胱氨酸, BioXtra, ≥99% (TLC)
Sigma-Aldrich
硒, pellets, <5 mm, ≥99.99% trace metals basis
Sigma-Aldrich
硒, pellets, <5 mm particle size, ≥99.999% trace metals basis
硒, foil, 25x25mm, thickness 3mm, 99.95%
硒, pellets, < 5mm, ≥99.999%
Sigma-Aldrich
N-乙酰基-L-半胱氨酸, SAJ special grade, 98.0-102.0%
Sigma-Aldrich
Amyloid Protein Non-Aβ Component, ≥80% (HPLC)