跳转至内容
Merck
  • The role of cortical cholinergic pre- and post-synaptic receptors in taste memory formation.

The role of cortical cholinergic pre- and post-synaptic receptors in taste memory formation.

Neurobiology of learning and memory (2003-02-20)
Leticia Ramírez-Lugo, María Isabel Miranda, Martha Lilia Escobar, Enrique Espinosa, Federico Bermúdez-Rattoni
摘要

A number of studies have implicated cholinergic activity in the mediation of learning and memory processes. However, the specific role of muscarinic receptors in memory formation mechanisms is less known. The aim of the present study is to evaluate the effects of muscarinic antagonist M2 presynaptic receptor, AFDX-116 (0.5mM) and M1 and M3 post-synaptic receptor pirenzepine (100mM), as well as a non-selective muscarinic antagonist, scopolamine (136mM), in the insular cortex (IC) during acquisition and retrieval of conditioned taste aversion (CTA). In addition, we evaluate the effects of those antagonists in cortical ACh release by in vivo microdialysis and the effects on the induction of in vivo LTP in the BLA-IC projection. The results showed that the cortical microinjections of scopolamine and pirenzepine, but not AFDX-116, produced significant disruption in the acquisition of CTA, without effects during retrieval. Microinjections of scopolamine and AFDX-116 produced significant cortical ACh release, while infusions of pirenzepine did not produce any release. Application of scopolamine and pirenzepine diminished induction of LTP in the BLA-IC projection, but not AFDX-116, as compared with vehicle. The induction of BLA-CI LTP seems to be modulated by post-synaptic muscarinic acetylcholine receptors and not by pre-synaptic muscarinic receptors. These results suggest a differential involvement of cholinergic receptors during acquisition and retrieval of aversive memory formation, as well as a differential role of muscarinic receptors in the biochemical and electrophysiological processes that may underlay aversive memory.

材料
货号
品牌
产品描述

Sigma-Aldrich
AF-DX 116, ≥98% (HPLC)