跳转至内容
Merck
  • Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in TP53 wild-type Ewing sarcoma.

Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in TP53 wild-type Ewing sarcoma.

The Journal of experimental medicine (2018-07-27)
Björn Stolte, Amanda Balboni Iniguez, Neekesh V Dharia, Amanda L Robichaud, Amy Saur Conway, Ann M Morgan, Gabriela Alexe, Nathan J Schauer, Xiaoxi Liu, Gregory H Bird, Aviad Tsherniak, Francisca Vazquez, Sara J Buhrlage, Loren D Walensky, Kimberly Stegmaier
摘要

Ewing sarcoma is a pediatric cancer driven by EWS-ETS transcription factor fusion oncoproteins in an otherwise stable genomic background. The majority of tumors express wild-type TP53, and thus, therapies targeting the p53 pathway would benefit most patients. To discover targets specific for TP53 wild-type Ewing sarcoma, we used a genome-scale CRISPR-Cas9 screening approach and identified and validated MDM2, MDM4, USP7, and PPM1D as druggable dependencies. The stapled peptide inhibitor of MDM2 and MDM4, ATSP-7041, showed anti-tumor efficacy in vitro and in multiple mouse models. The USP7 inhibitor, P5091, and the Wip1/PPM1D inhibitor, GSK2830371, decreased the viability of Ewing sarcoma cells. The combination of ATSP-7041 with P5091, GSK2830371, and chemotherapeutic agents showed synergistic action on the p53 pathway. The effects of the inhibitors, including the specific USP7 inhibitor XL-188, were rescued by concurrent TP53 knockout, highlighting the essentiality of intact p53 for the observed cytotoxic activities.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗-α-微管蛋白小鼠mAb(DM1A), liquid, clone DM1A, Calbiochem®
Sigma-Aldrich
XL188, ≥98% (HPLC)