跳转至内容
Merck
  • Priming of eosinophils by GM-CSF is mediated by protein kinase CbetaII-phosphorylated L-plastin.

Priming of eosinophils by GM-CSF is mediated by protein kinase CbetaII-phosphorylated L-plastin.

Journal of immunology (Baltimore, Md. : 1950) (2011-04-29)
Konrad Pazdrak, Travis W Young, Christof Straub, Susan Stafford, Alexander Kurosky
摘要

The priming of eosinophils by cytokines leading to augmented response to chemoattractants and degranulating stimuli is a characteristic feature of eosinophils in the course of allergic inflammation and asthma. Actin reorganization and integrin activation are implicated in eosinophil priming by GM-CSF, but their molecular mechanism of action is unknown. In this regard, we investigated the role of L-plastin, an eosinophil phosphoprotein that we identified from eosinophil proteome analysis. Phosphoproteomic analysis demonstrated the upregulation of phosphorylated L-plastin after eosinophil stimulation with GM-CSF. Additionally, coimmunoprecipitation studies demonstrated a complex formation of phosphorylated L-plastin with protein kinase CβII (PKCβII), GM-CSF receptor α-chain, and two actin-associated proteins, paxilin and cofilin. Inhibition of PKCβII with 4,5-bis(4-fluoroanilino)phtalimide or PKCβII-specific small interfering RNA blocked GM-CSF-induced phosphorylation of L-plastin. Furthermore, flow cytometric analysis also showed an upregulation of α(M)β(2) integrin, which was sensitive to PKCβII inhibition. In chemotaxis assay, GM-CSF treatment allowed eosinophils to respond to lower concentrations of eotaxin, which was abrogated by the above-mentioned PKCβII inhibitors. Similarly, inhibition of PKCβII blocked GM-CSF induced priming for degranulation as assessed by release of eosinophil cationic protein and eosinophil peroxidase in response to eotaxin. Importantly, eosinophil stimulation with a synthetic L-plastin peptide (residues 2-19) phosphorylated on Ser(5) upregulated α(M)β(2) integrin expression and increased eosinophil migration in response to eotaxin independent of GM-CSF stimulation. Our results establish a causative role for PKCβII and L-plastin in linking GM-CSF-induced eosinophil priming for chemotaxis and degranulation to signaling events associated with integrin activation via induction of PKCβII-mediated L-plastin phosphorylation.