跳转至内容
Merck
  • Quantitative proteomics and integrative network analysis identified novel genes and pathways related to osteoporosis.

Quantitative proteomics and integrative network analysis identified novel genes and pathways related to osteoporosis.

Journal of proteomics (2016-05-08)
Yong Zeng, Lan Zhang, Wei Zhu, Chao Xu, Hao He, Yu Zhou, Yao-Zhong Liu, Qing Tian, Ji-Gang Zhang, Fei-Yan Deng, Hong-Gang Hu, Li-Shu Zhang, Hong-Wen Deng
摘要

Osteoporosis is mainly characterized by low bone mineral density (BMD), and can be attributed to excessive bone resorption by osteoclasts. Migration of circulating monocytes from blood to bone is important for subsequent osteoclast differentiation and bone resorption. Identification of those genes and pathways related to osteoclastogenesis and BMD will contribute to a better understanding of the pathophysiological mechanisms of osteoporosis. In this study, we applied the LC-nano-ESI-MS(E) (Liquid Chromatograph-nano-Electrospray Ionization-Mass Spectrometry) for quantitative proteomic profiling in 33 female Caucasians with discordant BMD levels, with 16 high vs. 17 low BMD subjects. Protein quantitation was accomplished by label-free measurement of total ion currents collected from MS(E) data. Comparison of protein expression in high vs. low BMD subjects showed that ITGA2B (p=0.0063) and GSN (p=0.019) were up-regulated in the high BMD group. Additionally, our protein-RNA integrative analysis showed that RHOA (p=0.00062) differentially expressed between high vs. low BMD groups. Network analysis based on multiple tools revealed two pathways: "regulation of actin cytoskeleton" (p=1.13E-5, FDR=3.34E-4) and "leukocyte transendothelial migration" (p=2.76E-4, FDR=4.71E-3) that are functionally relevant to osteoporosis. Consistently, ITGA2B, GSN and RHOA played crucial roles in these two pathways respectively. All together, our study strongly supported the contribution of the genes ITGA2B, GSN and RHOA and the two pathways to osteoporosis risk. Mass spectrometry based quantitative proteomics study integrated with network analysis identified novel genes and pathways related to osteoporosis. The results were further verified in multiple level studies including protein-RNA integrative analysis and genome wide association studies.