跳转至内容
Merck
  • Oral administration with a traditional fermented multi-fruit beverage modulates non-specific and antigen-specific immune responses in BALB/c mice.

Oral administration with a traditional fermented multi-fruit beverage modulates non-specific and antigen-specific immune responses in BALB/c mice.

PloS one (2020-05-12)
Jamie Bernadette A Sy, Tsui-Chun Hsu, Aniket Limaye, Je-Ruei Liu
摘要

Fruits have been widely considered as the default "health foods" because they contain numerous vitamins and minerals needed to sustain human health. Fermentation strategies have been utilized to enhance the nutritive and flavor features of healthy and readily consumable fruit products while extending their shelf lives. A traditional fermented multi-fruit beverage was made from five fruits including kiwi, guava, papaya, pineapple, and grape fermented by Saccharomyces cerevisiae along with lactic acid bacteria and acetic acid bacteria. The immunomodulatory properties of the fermented multi-fruit beverage, in vivo nonspecific and ovalbumin (OVA)-specific immune response experiments using female BALB/c mice were performed. Administration of the fermented multi-fruit beverage reduced the calorie intake, thus resulting in a less weight gain in mice compared to the water (placebo)-fed mice. In the nonspecific immune study model, the fermented multi-fruit beverage enhanced phagocytosis and T cell proliferation but did not affect B cell proliferation and immunoglobulin G (IgG) production. Analysis of cytokine secretion profile also revealed that the fermented multi-fruit beverage enhanced proinflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and T helper (Th)1-related cytokine interferon (IFN)-γ production, thus creating an immunostimulatory effect. Nonetheless, in the specific immune study model, the results showed that the fermented multi-fruit beverage decreased the production of proinflammatory cytokines IL-6 and TNF-α production in OVA-immunized mice. Moreover, it also caused a decrease in the production of anti-OVA IgG1, which was accompanied by a decrease in Th2-related cytokines IL-4 and IL-5 production and an increase in Th1-related cytokine IFN-γ production, indicating that it may have the potential to shift the immune system from the allergen-specific Th2 responses toward Th1-type responses. The results indicate that fermented multi-fruit beverage has the potential to modulate immune responses both in a nonspecific and specific manners.

材料
货号
品牌
产品描述

Sigma-Aldrich
Mouse IgG2a ELISA Kit