跳转至内容
Merck

Clock genes control cortical critical period timing.

Neuron (2015-03-25)
Yohei Kobayashi, Zhanlei Ye, Takao K Hensch
摘要

Circadian rhythms control a variety of physiological processes, but whether they may also time brain development remains largely unknown. Here, we show that circadian clock genes control the onset of critical period plasticity in the neocortex. Within visual cortex of Clock-deficient mice, the emergence of circadian gene expression was dampened, and the maturation of inhibitory parvalbumin (PV) cell networks slowed. Loss of visual acuity in response to brief monocular deprivation was concomitantly delayed and rescued by direct enhancement of GABAergic transmission. Conditional deletion of Clock or Bmal1 only within PV cells recapitulated the results of total Clock-deficient mice. Unique downstream gene sets controlling synaptic events and cellular homeostasis for proper maturation and maintenance were found to be mis-regulated by Clock deletion specifically within PV cells. These data demonstrate a developmental role for circadian clock genes outside the suprachiasmatic nucleus, which may contribute mis-timed brain plasticity in associated mental disorders.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗NeuN抗体,克隆A60, clone A60, Chemicon®, from mouse
Sigma-Aldrich
抗Cre重组酶抗体,克隆2D8, ascites fluid, clone 2D8, Chemicon®
Sigma-Aldrich
抗-生长抑素抗体,克隆YC7, culture supernatant, clone YC7, Chemicon®
Sigma-Aldrich
抗-mPER1(残基6-21)抗体, serum, from rabbit
Sigma-Aldrich
抗-BMAL1抗体, serum, from guinea pig
Sigma-Aldrich
Anti-CLOCK Antibody, serum, Chemicon®