跳转至内容
Merck
  • Gremlin-1 is a key regulator of the invasive cell phenotype in mesothelioma.

Gremlin-1 is a key regulator of the invasive cell phenotype in mesothelioma.

Oncotarget (2017-12-13)
Miao Yin, Mira Tissari, Jenni Tamminen, Irene Ylivinkka, Mikko Rönty, Pernilla von Nandelstadh, Kaisa Lehti, Marko Hyytiäinen, Marjukka Myllärniemi, Katri Koli
摘要

Malignant mesothelioma originates from mesothelial cells and is a cancer type that aggressively invades into the surrounding tissue, has poor prognosis and no effective treatment. Gremlin-1 is a cysteine knot protein that functions by inhibiting BMP-pathway activity during development. BMP-independent functions have also been described for gremlin-1. We have previously shown high gremlin-1 expression in mesothelioma tumor tissue. Here, we investigated the functions of gremlin-1 in mesothelioma cell migration and invasive growth. Gremlin-1 promoted mesothelioma cell sprouting and invasion into three dimensional collagen and Matrigel matrices. The expression level of gremlin-1 was linked to changes in the expression of SNAI2, integrins, matrix metalloproteinases (MMP) and TGF-β family signaling - all previously associated with a mesenchymal invasive phenotype. Small molecule inhibitors of MMPs completely blocked mesothelioma cell invasive growth. In addition, inhibitors of TGF-β receptors significantly reduced invasive growth. This was associated with reduced expression of MMP2 but not SNAI2, indicating that gremlin-1 has both TGF-β pathway dependent and independent mechanisms of action. Results of in vivo mesothelioma xenograft experiments indicated that gremlin-1 overexpressing tumors were more vascular and had a tendency to send metastases. This suggests that by inducing a mesenchymal invasive cell phenotype together with enhanced tumor vascularization, gremlin-1 drives mesothelioma invasion and metastasis. These data identify gremlin-1 as a potential therapeutic target in mesothelioma.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗-整合素α-V抗体,克隆272-17E6(不含叠氮化物), clone 272-17E6, from mouse