SML2833
JTE-607
≥98% (HPLC)
别名:
(-)-Ethyl-N-{3,5-dichloro-2-hydroxy-4-[2-(4-methylpiperazin-1-yl)ethoxy]benzoyl}-L-phenylalaninate dihydrochloride, JTE 607, N-[3,5-Dichloro-2-hydroxy-4-[2-(4-methyl-1-piperazinyl)ethoxy]benzoyl]-L-phenylalanine ethyl ester dihydrochloride
登录查看公司和协议定价
所有图片(1)
About This Item
推荐产品
品質等級
化驗
≥98% (HPLC)
形狀
powder
顏色
white to beige
溶解度
H2O: 2 mg/mL, clear
儲存溫度
2-8°C
InChI
1S/C25H31Cl2N3O5.2ClH/c1-3-34-25(33)20(15-17-7-5-4-6-8-17)28-24(32)18-16-19(26)23(21(27)22(18)31)35-14-13-30-11-9-29(2)10-12-30;;/h4-8,16,20,31H,3,9-15H2,1-2H3,(H,28,32);2*1H/t20-;;/m0../s1
InChI 密鑰
JUJAUEQJEWIWCQ-FJSYBICCSA-N
生化/生理作用
JTE-607 is a pro-drug, which carboxylic form (JTE-607-COOH) is a potent cytokine release inhibitor. JTE-607 reduces the production of proinflammatory cytokines in models of acute injury, septic shock and endotoxemia. It also inhibits proliferation of AML cell in vitro and in xenograft model. JTE-607 is an inhibitor of CPSF3 (pre-messenger RNA endonuclease cleavage and polyadenylation specificity factor 3) that directly binds to CPSF3 and blocks the release of newly synthesized pre-mRNAs.
儲存類別代碼
11 - Combustible Solids
水污染物質分類(WGK)
WGK 3
閃點(°F)
Not applicable
閃點(°C)
Not applicable
Cancer science, 101(3), 774-781 (2009-12-24)
Proinflammatory cytokines and growth factors have been thought to play crucial roles in the pathology of acute myelogenous leukemia (AML) by supporting the proliferation and survival of AML cells in an autocrine and paracrine manner, although further elucidation is required.
Biochemical and biophysical research communications, 518(1), 32-37 (2019-08-11)
JTE-607 is a small molecule that was developed as an inflammatory cytokine inhibitor and also as an anti-leukemia reagent for monocytic leukemia. However, the mode of action of JTE-607 remains unknown. In this study, we identified JTE-607 to be a
Nature chemical biology, 16(1), 50-59 (2019-12-11)
The post-genomic era has seen many advances in our understanding of cancer pathways, yet resistance and tumor heterogeneity necessitate multiple approaches to target even monogenic tumors. Here, we combine phenotypic screening with chemical genetics to identify pre-messenger RNA endonuclease cleavage
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门