跳转至内容
Merck

909602

Sigma-Aldrich

DSSO crosslinker

≥95%

别名:

Bis(2,5-dioxopyrrolidin-1-yl) 3,3′-sulfinyldipropionate, Bis-(propionic acid NHS ester)-sulfoxide, Mass spectrometry-cleavable crosslinker for studying protein-protein interations

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C14H16N2O9S
分子量:
388.35
MDL號碼:
分類程式碼代碼:
12161502

化驗

≥95%

形狀

powder

存貨情形

available only in USA

儲存溫度

2-8°C

應用

DSSO (disuccinimidyl sulfoxide) crosslinker is a homobifunctional, amine-targeting, sulfoxide-containing crosslinker for analysis of protein-protein interactions (PPIs) through crosslinking mass spectrometry (XL-MS). Membrane-permeable DSSO possesses two N-hydroxysuccinimide (NHS) esters for targeting Lys, a 10.1 Å spacer arm, and two symmetrical C-S cleavable bonds adjacent to the central sulfoxide. The post-cleavage spacer yields tagged peptides for unambiguous identification by collision-induced dissociation in tandem MS. DSSO Crosslinker provides complementary data to thiol-reactive and acidic residue-targeting reagents and will find wide utility in the elucidation of PPIs, study of proteins that function as complexes, quantification of structural dynamics, and the quest for targeting ″undruggable″ protein targets.

法律資訊

Subject to US Patent #9,222,943 and US Patent Application #15/275,001 of the Regents of the University of California

相關產品

产品编号
说明
价格

象形圖

Flame

訊號詞

Danger

危險聲明

危險分類

Self-react. C

儲存類別代碼

5.2 - Organic peroxides and self-reacting hazardous materials

水污染物質分類(WGK)

WGK 3


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Christian E Stieger et al.
Journal of proteome research, 18(3), 1363-1370 (2019-01-30)
Cross-linking mass spectrometry is becoming increasingly popular, and current advances are widening the applicability of the technique so that it can be utilized by nonspecialist laboratories. Specifically, the use of novel mass-spectrometry-cleavable (MS-cleavable) reagents dramatically reduces the complexity of the
Tara K Bartolec et al.
Analytical chemistry, 92(2), 1874-1882 (2019-12-19)
Saccharomyces cerevisiae has the most comprehensively characterized protein-protein interaction network, or interactome, of any eukaryote. This has predominantly been generated through multiple, systematic studies of protein-protein interactions by two-hybrid techniques and of affinity-purified protein complexes. A pressing question is to
Clinton Yu et al.
Analytical chemistry, 88(20), 10301-10308 (2016-10-19)
Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the
Sebastiaan C de Graaf et al.
Journal of proteome research, 18(2), 642-651 (2018-12-24)
Protein interactions enable much more complex behavior than the sum of the individual protein parts would suggest and represents a level of biological complexity requiring full understanding when unravelling cellular processes. Cross-linking mass spectrometry has emerged as an attractive approach
Lei Lu et al.
Journal of proteome research, 17(7), 2370-2376 (2018-05-26)
Protein chemical cross-linking combined with mass spectrometry has become an important technique for the analysis of protein structure and protein-protein interactions. A variety of cross-linkers are well developed, but reliable, rapid, and user-friendly tools for large-scale analysis of cross-linked proteins

商品

Sulfoxide-containing MS-cleavable cross-linkers capture protein-protein interactions in native cellular environments, aiding PPI identification.

Sulfoxide-containing MS-cleavable cross-linkers capture protein-protein interactions in native cellular environments, aiding PPI identification.

Sulfoxide-containing MS-cleavable cross-linkers capture protein-protein interactions in native cellular environments, aiding PPI identification.

Sulfoxide-containing MS-cleavable cross-linkers capture protein-protein interactions in native cellular environments, aiding PPI identification.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门