跳转至内容
Merck

689440

Sigma-Aldrich

O-(2-叠氮乙基)七聚乙二醇

≥95% (oligomer purity)

别名:

叠氮-PEG(聚合度为 7)

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C16H33N3O8
分子量:
395.45
Beilstein:
8940056
MDL號碼:
分類程式碼代碼:
12352200
PubChem物質ID:
NACRES:
NA.22

化驗

≥95% (oligomer purity)

形狀

powder

分子量

average Mn 400

反應適用性

reaction type: click chemistry
reagent type: cross-linking reagent

Ω-end

hydroxyl

α-end

azide

官能基

azide
hydroxyl

儲存溫度

2-8°C

SMILES 字串

OCCOCCOCCOCCOCCOCCOCCOCCN=[N+]=[N-]

InChI

1S/C16H33N3O8/c17-19-18-1-3-21-5-7-23-9-11-25-13-15-27-16-14-26-12-10-24-8-6-22-4-2-20/h20H,1-16H2

InChI 密鑰

BUMODEBRFGPXRM-UHFFFAOYSA-N

應用

O-(2-Azidoethyl)heptaethylene glycol is used to synthesize oligo and poly(ethylene glycol) derivatives that are used as structural units of dendrimers, hydrogels, surface modifiers, self-assembling systems and molecular crosslinkers. This precursor is compatible for acetylene-azide click reactions.

Some of the reported applications include:
  • Synthesis of strain-stiffening hydrogels through self-assembly of oligomers fibres derived from Azido-PEG (n=7).
  • Synthesis of biodegradable tetra-PEG hydrogels for drug delivery system.
  • Synthesis of heterobifunctional oligo(ethylene glycol) linkers for bioconjugation and targeted drug delivery.
  • Preparation of synthetic amphiphiles for programmed pH-dependent dispersions of carbon nanotubes (CNTs).
  • Selective glycoprotein detection through allosteric click-imprinting by using a self-assembled monolayer developed from the above oligomer.
  • Preparation of bioactivated quantum dot micelles containing fluorescent nanocrystals.

包裝

Bottomless glass bottle. Contents are inside inserted fused cone.

象形圖

Exclamation mark

訊號詞

Warning

危險聲明

危險分類

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

標靶器官

Respiratory system

儲存類別代碼

10 - Combustible liquids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable

個人防護裝備

dust mask type N95 (US), Eyeshields, Gloves


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Efficient synthesis of diverse heterobifunctionalized clickable oligo (ethylene glycol) linkers: potential applications in bioconjugation and targeted drug delivery.
Goswami LN, et al.
Organic & Biomolecular Chemistry, 11(7), 1116-1126 (2013)
Selective glycoprotein detection through covalent templating and allosteric click-imprinting.
Stephenson-Brown A, et al.
Chemical Science, 6(9), 5114-5119 (2015)
Small bioactivated magnetic quantum dot micelles.
Roullier V, et al.
Chemistry of Materials, 20(21), 6657-6665 (2008)
Programmed dispersions of MWNTs in aqueous media by coating with photopolymerizable synthetic amphiphiles.
Thauvin C, et al.
The Journal of Physical Chemistry C, 115(15), 7319-7322 (2011)
Strain stiffening hydrogels through self?assembly and covalent fixation of semi?flexible fibers.
Sijbesma RP, et al.
Angewandte Chemie (International Edition in English), 56, 8771-8771 (2017)

商品

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

查看所有结果

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门