Skip to Content
Merck
  • Novel Biological Substrates of Human Kallikrein 7 Identified through Degradomics.

Novel Biological Substrates of Human Kallikrein 7 Identified through Degradomics.

The Journal of biological chemistry (2015-06-03)
Yijing Yu, Ioannis Prassas, Apostolos Dimitromanolakis, Eleftherios P Diamandis
ABSTRACT

Kallikrein-related peptidases (KLKs) are a group of serine proteases widely expressed in various tissues and involved in a wide range of physiological and pathological processes. Although our understanding of the pathophysiological roles of most KLKs has blossomed in recent years, identification of the direct endogenous substrates of human KLKs remains an unmet objective. In this study we employed a degradomics approach to systemically investigate the endogenous substrates of KLK7 in an effort to understand the molecular pathways underlying KLK7 action in skin. We identified several previously known as well as novel protein substrates. Our most promising candidates were further validated with the use of targeted quantitative proteomics (selected reaction monitoring methods) and in vitro recombinant protein digestion assays. Our study revealed midkine, CYR61, and tenascin-C as endogenous substrates for KLK7. Interestingly, some of these substrates (e.g. midkine) were prone to proteolytic cleavage only by KLK7 (and not by other skin-associated KLKs), whereas others (e.g. CYR61 and tenascin-C) could be digested by several KLKs. Furthermore, using melanoma cell line, we show that KLK7-mediated cleavage of midkine results in an overall reduction in the pro-proliferative and pro-migratory effect of midkine. An inverse relation between KLK7 and midkine is also observed in human melanoma tissues. In summary, our degradomics approach revealed three novel endogenous substrates for KLK7, which may shed more light on the pathobiological roles of KLK7 in human skin. Similar substrate screening approaches could be applied for the discovery of biological substrates of other protease.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
7-Amino-4-methylcoumarin, 99%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
7-Amino-4-methylcoumarin, Chromophore for substrates
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Sodium chloride, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Acetic acid, ≥99.7%, suitable for amino acid analysis
Sigma-Aldrich
Sodium chloride solution, 1 M
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Acetic acid, 99.5-100.0%
Sigma-Aldrich
Acetic acid solution, 1 M, 1 N
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Acetic acid, JIS special grade, ≥99.7%
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid, SAJ first grade, ≥99.0%