Skip to Content
Merck
  • AICAR and nicotinamide treatment synergistically augment the proliferation and attenuate senescence-associated changes in mesenchymal stromal cells.

AICAR and nicotinamide treatment synergistically augment the proliferation and attenuate senescence-associated changes in mesenchymal stromal cells.

Stem cell research & therapy (2020-02-06)
Mohammadhossein Khorraminejad-Shirazi, Mahsa Sani, Tahereh Talaei-Khozani, Mohammadreza Dorvash, Malihe Mirzaei, Mohammad Ali Faghihi, Ahmad Monabati, Armin Attar
ABSTRACT

Mesenchymal stromal cell (MSC) stemness capacity diminishes over prolonged in vitro culture, which negatively affects their application in regenerative medicine. To slow down the senescence of MSCs, here, we have evaluated the in vitro effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, and nicotinamide (NAM), an activator of sirtuin1 (SIRT1). Human adipose-derived MSCs were cultured to passage (P) 5. Subsequently, the cells were grown in either normal medium alone (control group), the medium supplemented with AICAR (1 mM) and NAM (5 mM), or in the presence of both for 5 weeks to P10. Cell proliferation, differentiation capacity, level of apoptosis and autophagy, morphological changes, total cellular reactive oxygen species (ROS), and activity of mTORC1 and AMPK were compared among different treatment groups. MSCs treated with AICAR, NAM, or both displayed an increase in proliferation and osteogenic differentiation, which was augmented in the group receiving both. Treatment with AICAR or NAM led to decreased expression of β-galactosidase, reduced accumulation of dysfunctional lysosomes, and characteristic morphologic features of young MSCs. Furthermore, while NAM administration could significantly reduce the total cellular ROS in aged MSCs, AICAR treatment did not. Moreover, AICAR-treated cells possess a high proliferation capacity; however, they also show the highest level of cellular apoptosis. The observed effects of AICAR and NAM were in light of the attenuated mTORC1 activity and increased AMPK activity and autophagy. Selective inhibition of mTORC1 by AICAR and NAM boosts autophagy, retains MSCs' self-renewal and multi-lineage differentiation capacity, and postpones senescence-associated changes after prolonged in vitro culture. Additionally, co-administration of AICAR and NAM shows an additive or probably a synergistic effect on cellular senescence.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
AICAR, ≥98% (HPLC), powder
Sigma-Aldrich
Anti-Mouse IgG (Fc specific) F(ab′)2 fragment−FITC antibody produced in goat, flow cytometry grade, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Acridine Orange hydrochloride solution, ≥95.0% (HPLC), 10 mg/mL in H2O
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
Anti-Caspase3 (active form) Antibody, clone 3D9.3, clone 3D9.3, from mouse
Sigma-Aldrich
DAPI/Antifade Solution, Ready to Use
Sigma-Aldrich
Senescence Cells Histochemical Staining Kit, sufficient for 100 tests