Skip to Content
Merck
  • Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation.

Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation.

Journal of controlled release : official journal of the Controlled Release Society (2008-10-28)
Fabienne Danhier, Nathalie Lecouturier, Benoît Vroman, Christine Jérôme, Jacqueline Marchand-Brynaert, Olivier Feron, Véronique Préat
ABSTRACT

The purpose of this study was to develop Cremophor EL-free nanoparticles loaded with Paclitaxel (PTX), intended to be intravenously administered, able to improve the therapeutic index of the drug and devoid of the adverse effects of Cremophor EL. PTX-loaded PEGylated PLGA-based were prepared by simple emulsion and nanoprecipitation. The incorporation efficiency of PTX was higher with the nanoprecipitation technique. The release behavior of PTX exhibited a biphasic pattern characterized by an initial burst release followed by a slower and continuous release. The in vitro anti-tumoral activity was assessed using the Human Cervix Carcinoma cells (HeLa) by the MTT test and was compared to the commercial formulation Taxol and to Cremophor EL. When exposed to 25 microg/ml of PTX, the cell viability was lower for PTX-loaded nanoparticles than for Taxol (IC(50) 5.5 vs 15.5 microg/ml). Flow cytometry studies showed that the cellular uptake of PTX-loaded nanoparticles was concentration and time dependent. Exposure of HeLa cells to Taxol and PTX-loaded nanoparticles induced the same percentage of apoptotic cells. PTX-loaded nanoparticles showed greater tumor growth inhibition effect in vivo on TLT tumor, compared with Taxol. Therefore, PTX-loaded nanoparticles may be considered as an effective anticancer drug delivery system for cancer chemotherapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA average Mn 10,000, lactide:glycolide 80:20
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA average Mn 5,000, lactide:glycolide 80:20
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 2,000, PLGA average Mn 10,000, lactide:glycolide 80:20
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA Mn 15,000, lactide:glycolide 80:20
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 2,000, PLGA average Mn 10,000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 2,000, PLGA Mn 3,000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA Mn 20,000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA Mn 15,000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA Mn 5,000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA Mn 10,000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(D,L-lactide-co-glycolide)(50:50)-b-poly(ethylene glycol), 10k-2k