Skip to Content
Merck
  • Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently.

Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently.

Toxicology and applied pharmacology (2015-02-15)
Roger Lille-Langøy, Jared V Goldstone, Marte Rusten, Matthew R Milnes, Rune Male, John J Stegeman, Bruce Blumberg, Anders Goksøyr
ABSTRACT

Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation.

MATERIALS
Product Number
Brand
Product Description

Supelco
Omeprazole, analytical standard
Supelco
Ketoconazole, Pharmaceutical Secondary Standard; Certified Reference Material
Omeprazole for peak identification, European Pharmacopoeia (EP) Reference Standard
Clotrimazole for peak identification, European Pharmacopoeia (EP) Reference Standard
Rifampicin, European Pharmacopoeia (EP) Reference Standard
USP
Clotrimazole, United States Pharmacopeia (USP) Reference Standard
Clotrimazole, European Pharmacopoeia (EP) Reference Standard
Supelco
Omeprazole, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Clotrimazole, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
γ-BHC, certified reference material, 1000 μg/mL in methanol
Sigma-Aldrich
3,3′,5,5′-Tetrabromobisphenol A, 97%
Sigma-Aldrich
Perfluorononanoic acid, 97%
Sigma-Aldrich
Ketoconazole, 99.0-101.0% (EP, titration)
Ketoconazole, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, JIS special grade, ≥99.0%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.0%, suitable for absorption spectrum analysis
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
USP
Omeprazole, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Supelco
Dimethyl sulfoxide, for inorganic trace analysis, ≥99.99995% (metals basis)
Supelco
Dimethyl sulfoxide, analytical standard
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide solution, 50 wt. % in H2O
Dimethyl sulfoxide, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications