Skip to Content
Merck
  • Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide.

Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide.

Journal of hazardous materials (2011-05-03)
Ling Zhang, Lihua Wan, Ning Chang, Jianyong Liu, Chao Duan, Qi Zhou, Xiangling Li, Xinze Wang
ABSTRACT

Phosphate removal from wastewater is very important for the prevention of eutrophication. Adsorption of phosphate from water was investigated using activated carbon fiber loaded with lanthanum oxide (ACF-La) as a novel adsorbent. The effects of variables (La/ACF mass ratio, impregnation time, activation time, and activation temperature) have been studied by the single-factor method. Response surface methodology (RSM), based on three-variable-three-level Box-Behnken design (BBD), was employed to assess the individual and collective effects of the main independent parameters on the phosphate removal. The optimal conditions within the range studied for preparing ACF-La were found as follows: La/ACF mass ratio of 11.78%, activation time of 2.5h and activation temperature at 650°C, respectively. The phosphate removal using the ACF-La prepared under the optimal conditions was up to 97.6% even when the phosphate concentration in water was 30 mgP/L, indicating that ACF-La may be an effective adsorbent. The results from Fourier transform infrared (FT-IR) spectroscopy and change of pH values associated with the adsorption process revealed that the probable mechanism of phosphate ions onto ACF-La was not only ion exchange and coulomb interaction, but also a result of Lewis acid-base interaction due to La-O coordination bonding.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lanthanum(III) oxide, nanopowder, <100 nm particle size (TEM), 99% trace metals basis
Supelco
Lanthanum(III) oxide, suitable for AAS, ≥99.9%
Sigma-Aldrich
Lanthanum(III) oxide, 99.999% trace metals basis
Sigma-Aldrich
Lanthanum(III) oxide, 99.99% trace metals basis
Sigma-Aldrich
Lanthanum(III) oxide, ≥99.9%