- Molecular design of multifunctional antibacterial agents against methicillin resistant Staphylococcus aureus (MRSA).
Molecular design of multifunctional antibacterial agents against methicillin resistant Staphylococcus aureus (MRSA).
Antibacterial activity of a series of alkyl gallates (3,4,5-trihydroxybenzoates) against Gram-positive bacteria, especially methicillin resistant Staphylococcus aureus (MRSA) strains was evaluated. Gram-positive bacteria are all susceptible to alkyl gallates. Dodecyl gallate was the most effective against MRSA ATCC 33591 strain with the minimum bactericidal concentration (MBC) of 25 microg/mL (74 microM). The time-kill curve study showed that dodecyl gallate was bactericidal against this MRSA strain at any growth stage. This activity was observed even in the chloramphenicol-treated cells, but the rate of decrease of cell number was slower than that in the exponentially growing cells. The bactericidal activity of medium-chain alkyl gallates was noted in combination with their ability to disrupt the native membrane-associated function nonspecifically as surface-active agents (surfactants) and to inhibit the respiratory electron transport. Subsequently, the same series of alkyl protocatechuates (3,4-dihydroxybenzoates) were studied and the results obtained are similar to those found for alkyl gallates. The length of the alkyl chain is not a major contributor but is related to the activity.