- Glycosylation-independent lysosomal targeting of acid α-glucosidase enhances muscle glycogen clearance in pompe mice.
Glycosylation-independent lysosomal targeting of acid α-glucosidase enhances muscle glycogen clearance in pompe mice.
We have used a peptide-based targeting system to improve lysosomal delivery of acid α-glucosidase (GAA), the enzyme deficient in patients with Pompe disease. Human GAA was fused to the glycosylation-independent lysosomal targeting (GILT) tag, which contains a portion of insulin-like growth factor II, to create an active, chimeric enzyme with high affinity for the cation-independent mannose 6-phosphate receptor. GILT-tagged GAA was taken up by L6 myoblasts about 25-fold more efficiently than was recombinant human GAA (rhGAA). Once delivered to the lysosome, the mature form of GILT-tagged GAA was indistinguishable from rhGAA and persisted with a half-life indistinguishable from rhGAA. GILT-tagged GAA was significantly more effective than rhGAA in clearing glycogen from numerous skeletal muscle tissues in the Pompe mouse model. The GILT-tagged GAA enzyme may provide an improved enzyme replacement therapy for Pompe disease patients.