Skip to Content
Merck

Optogenetic manipulation of calcium signals in single T cells in vivo.

Nature communications (2020-03-04)
Armelle Bohineust, Zacarias Garcia, Béatrice Corre, Fabrice Lemaître, Philippe Bousso
ABSTRACT

By offering the possibility to manipulate cellular functions with spatiotemporal control, optogenetics represents an attractive tool for dissecting immune responses. However, applying these approaches to single cells in vivo remains particularly challenging for immune cells that are typically located in scattering tissues. Here, we introduce an improved calcium actuator with sensitivity allowing for two-photon photoactivation. Furthermore, we identify an actuator/reporter combination that permits the simultaneous manipulation and visualization of calcium signals in individual T cells in vivo. With this strategy, we document the consequences of defined patterns of calcium signals on T cell migration, adhesion, and chemokine release. Manipulation of individual immune cells in vivo should open new avenues for establishing the functional contribution of single immune cells engaged in complex reactions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1,2-Dilinoleoyl-3-palmitoyl-rac-glycerol, ≥95% (TLC), liquid
Roche
CPRG, Chlorophenol red-β-D-galactopyranoside
Sigma-Aldrich
Chlorophenol Red-β-D-galactopyranoside, ≥90% (HPLC)
Sigma-Aldrich
IL-12 from mouse, recombinant, expressed in CHO cells, ≥98% (SDS-PAGE), ≥98% (HPLC), suitable for cell culture