Skip to Content
Merck
  • Simultaneous detection of phosphatidylcholines and glycerolipids using matrix-enhanced surface-assisted laser desorption/ionization-mass spectrometry with sputter-deposited platinum film.

Simultaneous detection of phosphatidylcholines and glycerolipids using matrix-enhanced surface-assisted laser desorption/ionization-mass spectrometry with sputter-deposited platinum film.

Journal of mass spectrometry : JMS (2015-10-28)
Tomoyuki Ozawa, Issey Osaka, Taisuke Ihozaki, Satoshi Hamada, Yusuke Kuroda, Tatsuya Murakami, Akio Miyazato, Hideya Kawasaki, Ryuichi Arakawa
ABSTRACT

Matrix-assisted laser desorption/ionisation (MALDI) imaging mass spectrometry (IMS) allows for the simultaneous detection and imaging of several molecules in brain tissue. However, the detection of glycerolipids such as diacylglycerol (DAG) and triacylglycerol (TAG) in brain tissues is hindered in MALDI-IMS because of the ion suppression effect from excessive ion yields of phosphatidylcholine (PC). In this study, we describe an approach that employs a homogeneously deposited metal nanoparticle layer (or film) for the detection of glycerolipids in rat brain tissue sections using IMS. Surface-assisted laser desorption/ionisation IMS with sputter-deposited Pt film (Pt-SALDI-IMS) for lipid analysis was performed as a solvent-free and organic matrix-free method. Pt-SALDI produced a homogenous layer of nanoparticles over the surface of the rat brain tissue section. Highly selective detection of lipids was possible by MALDI-IMS and Pt-SALDI-IMS; MALDI-IMS detected the dominant ion peak of PC in the tissue section, and there were no ion peaks representing glycerolipids such as DAG and TAG. In contrast, Pt-SALDI-IMS allowed the detection of these glycerolipids, but not PC. Therefore, using a hybrid method combining MALDI and Pt-SALDI (i.e., matrix-enhanced [ME]-Pt-SALDI-IMS), we achieved the simultaneous detection of PC, PE and DAG in rat brain tissue sections, and the sensitivity for the detection of these molecules was better than that of MALDI-IMS or Pt-SALDI alone. The present simple ME-Pt-SALDI approach for the simultaneous detection of PC and DAG using two matrices (sputter-deposited Pt film and DHB matrix) would be useful in imaging analyses of biological tissue sections.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Supelco
2,5-Dihydroxybenzoic acid, matrix substance for MALDI-MS, >99.0% (HPLC)
Sigma-Aldrich
2,5-Dihydroxybenzoic acid, 98%
Sigma-Aldrich
1,2-Dipalmitoyl-rac-glycerol, ≥99%
Sigma-Aldrich
1,2-Dioleoyl-rac-glycerol, ≥97%
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Trifluoroacetic acid, ≥99%, for protein sequencing
Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
Trifluoroacetic acid, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, for preparative HPLC, ≥99.8% (GC)
Sigma-Aldrich
Trifluoroacetic acid, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, ≥99.5% (GC)
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%