Skip to Content
Merck
  • Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo.

Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo.

Cell metabolism (2012-06-12)
Isaac Marin-Valencia, Chendong Yang, Tomoyuki Mashimo, Steve Cho, Hyeonman Baek, Xiao-Li Yang, Kartik N Rajagopalan, Melissa Maddie, Vamsidhara Vemireddy, Zhenze Zhao, Ling Cai, Levi Good, Benjamin P Tu, Kimmo J Hatanpaa, Bruce E Mickey, José M Matés, Juan M Pascual, Elizabeth A Maher, Craig R Malloy, Ralph J Deberardinis, Robert M Bachoo
ABSTRACT

Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused (13)C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Pyruvate Carboxylase from bovine liver, buffered aqueous glycerol solution, 5-25 units/mg protein (BCA)
Sigma-Aldrich
Glutaminase from Escherichia coli, Grade VII, lyophilized powder, 500-1,500 units/mg protein
Sigma-Aldrich
Glutaminase from Escherichia coli, Grade V, lyophilized powder, 50-200 units/mg protein
Sigma-Aldrich
ATP Citrate Lyase Active human, recombinant, expressed in baculovirus, ≥90% (SDS-PAGE)