Skip to Content
Merck
All Photos(3)

Documents

C24604

Sigma-Aldrich

3-Chlorobenzoic acid

ReagentPlus®, ≥99%

Synonym(s):

m-Chlorobenzoic acid

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
ClC6H4CO2H
CAS Number:
Molecular Weight:
156.57
Beilstein:
907218
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

product line

ReagentPlus®

Assay

≥99%

form

powder

mp

153-157 °C (lit.)

SMILES string

OC(=O)c1cccc(Cl)c1

InChI

1S/C7H5ClO2/c8-6-3-1-2-5(4-6)7(9)10/h1-4H,(H,9,10)

InChI key

LULAYUGMBFYYEX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Legal Information

ReagentPlus is a registered trademark of Merck KGaA, Darmstadt, Germany

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Sudip K Samanta et al.
Molecular microbiology, 55(4), 1151-1159 (2005-02-03)
Rhodopseudomonas palustris strain RCB100 degrades 3-chlorobenzoate (3-CBA) anaerobically. We purified from this strain a coenzyme A ligase that is active with 3-CBA and determined its N-terminal amino acid sequence to be identical to that of a cyclohexanecarboxylate-CoA ligase encoded by
Alfredo Gallego et al.
World journal of microbiology & biotechnology, 28(3), 1245-1252 (2012-07-19)
An indigenous strain of Pseudomonas putida capable of degrading 3-chlorobenzoic acid as the sole carbon source was isolated from the Riachuelo, a polluted river in Buenos Aires. Aerobic biodegradation assays were performed using a 2-l microfermentor. Biodegradation was evaluated by
V P Jayachandran et al.
Journal of industrial microbiology & biotechnology, 36(2), 219-227 (2008-10-23)
The compatibility and efficiency of two ortho-cleavage pathway-following pseudomonads viz. the 3-chlorobenzoate (3-CBA)-degrader, Pseudomonas aeruginosa 3mT (3mT) and the phenol-degrader, P. stutzeri SPC-2 (SPC-2) in a mixed culture for the degradation of these substrates singly and simultaneously in mixtures was
S Yoshida et al.
Journal of applied microbiology, 106(3), 790-800 (2009-02-05)
To characterize biofilm formation of a chlorobenzoates (CBs) degrading bacterium, Burkholderia sp. NK8, with another bacterial species, and the biodegradation activity against CBs in the mixed-species biofilm. Burkholderia sp. NK8 was solely or co-cultured with each of five other representative
Timur Deniz et al.
Water research, 38(20), 4524-4534 (2004-11-24)
A mixed microbial culture degraded a mixture of benzoate (863 mg/L), 3-chlorobenzoate (3-CB) (69.7 mg/L), and pyruvate (244 mg/L) under denitrifying conditions in a chemostat. Biodegradation under denitrifying conditions was stable, complete (effluent concentrations below detection limits), and proceeded without

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service