Accéder au contenu
Merck

Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography.

Journal of chromatography. A (2014-12-30)
Jan Soukup, Pavel Jandera
RÉSUMÉ

Excess adsorption of water from aqueous acetonitrile mobile phases was investigated on 16 stationary phases using the frontal analysis method and coulometric Karl-Fischer titration. The stationary phases include silica gel and silica-bonded phases with different polarities, octadecyl and cholesterol, phenyl, nitrile, pentafluorophenylpropyl, diol and zwitterionic sulfobetaine and phosphorylcholine ligands bonded on silica, hybrid organic-silica and hydrosilated matrices. Both fully porous and core-shell column types were included. Preferential uptake of water by the columns can be described by Langmuir isotherms. Even though a diffuse rather than a compact adsorbed discrete layer of water on the adsorbent surface can be formed because of the unlimited miscibility of water with acetonitrile, for convenience, the preferentially adsorbed water was expressed in terms of a hypothetical monomolecular water layer equivalent in the inner pores. The uptake of water strongly depends on the polarity and type of the column. Less than one monomolecular water layer equivalent was adsorbed on moderate polar silica hydride-based stationary phases, Ascentis Express F5 and Ascentis Express CN column at the saturation capacity, while on more polar stationary phases, several water layer equivalents were up-taken from the mobile phase. The strongest affinity to water was observed on the ZIC cHILIC stationary phases, where more than nine water layer equivalents were adsorbed onto its surface at its saturation capacity. Columns with bonded hydroxyl and diol ligands show stronger water adsorption in comparison to bare silica. Columns based on hydrosilated silica generally show significantly decreased water uptake in comparison to stationary phases bonded on ordinary silica. Significant correlations were found between the water uptake and the separation selectivity for compounds with strong polarity differences.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Tetrahydrofurane, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acétonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Tetrahydrofurane, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Toluène, ACS reagent, ≥99.5%
Sigma-Aldrich
Acide formique, reagent grade, ≥95%
Sigma-Aldrich
Toluène, suitable for HPLC, 99.9%
Sigma-Aldrich
Acide formique, ACS reagent, ≥96%
Sigma-Aldrich
Acétate d′ammonium, ACS reagent, ≥97%
Sigma-Aldrich
Toluène, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Acide formique, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Acétonitrile, ACS reagent, ≥99.5%
Supelco
Tetrahydrofurane, for liquid chromatography LiChrosolv®
Sigma-Aldrich
Acétonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Acétate d′ammonium, ≥99.99% trace metals basis
Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Toluène, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.7% (GC)
Sigma-Aldrich
Acide formique, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Phénol solution, BioReagent, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, for molecular biology
Sigma-Aldrich
Acide formique, ACS reagent, ≥88%
Sigma-Aldrich
Uracile, ≥99.0%
Sigma-Aldrich
Tetrahydrofurane, ReagentPlus®, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
Acétate d′ammonium, for molecular biology, ≥98%
Sigma-Aldrich
Tetrahydrofurane, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
Sigma-Aldrich
Acétonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acétate d′ammonium solution, for molecular biology, 7.5 M
Sigma-Aldrich
Phénol solution, BioReagent, Saturated with 0.01 M citrate buffer, pH 4.3 ± 0.2, for molecular biology
Sigma-Aldrich
Phénol, ≥99%
Sigma-Aldrich
Acétonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Toluène, ACS reagent, ≥99.5%