- Phosphorylation and DNA binding of HJURP determine its centromeric recruitment and function in CenH3(CENP-A) loading.
Phosphorylation and DNA binding of HJURP determine its centromeric recruitment and function in CenH3(CENP-A) loading.
Centromeres, epigenetically defined by the presence of the histone H3 variant CenH3, are essential for ensuring proper chromosome segregation. In mammals, centromeric CenH3(CENP-A) deposition requires its dedicated chaperone HJURP and occurs during telophase/early G1. We find that the cell-cycle-dependent recruitment of HJURP to centromeres depends on its timely phosphorylation controlled via cyclin-dependent kinases. A nonphosphorylatable HJURP mutant localizes prematurely to centromeres in S and G2 phase. This unregulated targeting causes a premature loading of CenH3(CENP-A) at centromeres, and cell-cycle delays ensue. Once recruited to centromeres, HJURP functions to promote CenH3(CENP-A) deposition by a mechanism involving a unique DNA-binding domain. With our findings, we propose a model wherein (1) the phosphorylation state of HJURP controls its centromeric recruitment in a cell-cycle-dependent manner, and (2) HJURP binding to DNA is a mechanistic determinant in CenH3(CENP-A) loading.