Skip to Content
Merck
  • Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing.

Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing.

Nature communications (2015-03-31)
Rozanne Arulanandam, Cory Batenchuk, Oliver Varette, Chadi Zakaria, Vanessa Garcia, Nicole E Forbes, Colin Davis, Ramya Krishnan, Raunak Karmacharya, Julie Cox, Anisha Sinha, Andrew Babawy, Katherine Waite, Erica Weinstein, Theresa Falls, Andrew Chen, Jeff Hamill, Naomi De Silva, David P Conrad, Harold Atkins, Kenneth Garson, Carolina Ilkow, Mads Kærn, Barbara Vanderhyden, Nahum Sonenberg, Tommy Alain, Fabrice Le Boeuf, John C Bell, Jean-Simon Diallo
ABSTRACT

In this study, we show that several microtubule-destabilizing agents used for decades for treatment of cancer and other diseases also sensitize cancer cells to oncolytic rhabdoviruses and improve therapeutic outcomes in resistant murine cancer models. Drug-induced microtubule destabilization leads to superior viral spread in cancer cells by disrupting type I IFN mRNA translation, leading to decreased IFN protein expression and secretion. Furthermore, microtubule-destabilizing agents specifically promote cancer cell death following stimulation by a subset of infection-induced cytokines, thereby increasing viral bystander effects. This study reveals a previously unappreciated role for microtubule structures in the regulation of the innate cellular antiviral response and demonstrates that unexpected combinations of approved chemotherapeutics and biological agents can lead to improved therapeutic outcomes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Cycloheximide, ≥90% (HPLC)
Sigma-Aldrich
Ammonium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Paclitaxel semi-synthetic for peak identification, European Pharmacopoeia (EP) Reference Standard
Albendazole, European Pharmacopoeia (EP) Reference Standard
SAFC
HEPES
USP
Albendazole, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Supelco
Cycloheximide, PESTANAL®, analytical standard
Supelco
Methanol, analytical standard
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Ammonium chloride, 99.99% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Ammonium chloride, 99.998% trace metals basis
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Propidium iodide, ≥94% (HPLC)
Sigma-Aldrich
Ammonium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Nocodazole, ≥99% (TLC), powder
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)