Skip to Content
Merck
  • Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues.

Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues.

Nature communications (2015-02-12)
Adi Tzur-Balter, Zohar Shatsberg, Margarita Beckerman, Ester Segal, Natalie Artzi
ABSTRACT

Nanostructured porous silicon (PSi) is emerging as a promising platform for drug delivery owing to its biocompatibility, degradability and high surface area available for drug loading. The ability to control PSi structure, size and porosity enables programming its in vivo retention, providing tight control over embedded drug release kinetics. In this work, the relationship between the in vitro and in vivo degradation of PSi under (pre)clinically relevant conditions, using breast cancer mouse model, is defined. We show that PSi undergoes enhanced degradation in diseased environment compared with healthy state, owing to the upregulation of reactive oxygen species (ROS) in the tumour vicinity that oxidize the silicon scaffold and catalyse its degradation. We further show that PSi degradation in vitro and in vivo correlates in healthy and diseased states when ROS-free or ROS-containing media are used, respectively. Our work demonstrates that understanding the governing mechanisms associated with specific tissue microenvironment permits predictive material performance.

MATERIALS
Product Number
Brand
Product Description

Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Supelco
Acetone, analytical standard
Supelco
Acetone, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
USP
Acetone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Hydrofluoric acid, ACS reagent, 48%
Sigma-Aldrich
Undecylenic acid, natural, ≥97%, FG
Sigma-Aldrich
Acetone, histological grade, ≥99.5%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Acetone, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
Hydrofluoric acid, 48 wt. % in H2O, ≥99.99% trace metals basis
Sigma-Aldrich
Ethanol, for residue analysis
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Thyrotropin releasing hormone, ≥98% (HPLC), powder
Sigma-Aldrich
Ethanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
10-Undecenoic acid, 98%
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)