Skip to Content
Merck
  • Laser-induced fluorescence and dispersed fluorescence spectroscopy of jet-cooled 1-phenylpropargyl radical.

Laser-induced fluorescence and dispersed fluorescence spectroscopy of jet-cooled 1-phenylpropargyl radical.

The Journal of chemical physics (2009-04-17)
Neil J Reilly, Masakazu Nakajima, Bligh A Gibson, Timothy W Schmidt, Scott H Kable
ABSTRACT

The D(1)((2)A("))-D(0)((2)A(")) electronic transition of the resonance-stabilized 1-phenylpropargyl radical, produced in a jet-cooled discharge of 3-phenyl-1-propyne, has been investigated in detail by laser-induced fluorescence excitation and dispersed single vibronic level fluorescence (SVLF) spectroscopy.The transition is dominated by the origin band at 21,007 cm(-1), with weaker Franck-Condon activity observed in a(') fundamentals and even overtones and combinations of a(") symmetry. Ab initio and density functional theory calculations of the D(0) and D(1) geometries and frequencies were performed to support and guide the experimental assignments throughout. Analysis of SVLF spectra from 16 D(1) vibronic levels has led to the assignment of 15 fundamental frequencies in the excited state and 19 fundamental frequencies in the ground state; assignments for many more normal modes not probed directly by fluorescence spectroscopy are also suggested. Duschinsky mixing, in which the excited state normal modes are rotated with respect to the ground state modes, is prevalent throughout, in vibrations of both a(') and a(") symmetry.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3-Phenyl-1-propyne, contains ca.250 ppm BHT as inhibitor, 97%
SKU
Pack Size
Availability
Price
Quantity