Skip to Content
Merck
  • FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability.

FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability.

Communications biology (2021-01-31)
Philippe Fernandes, Benoit Miotto, Claude Saint-Ruf, Maha Said, Viviana Barra, Viola Nähse, Silvia Ravera, Enrico Cappelli, Valeria Naim
ABSTRACT

Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and promotes CFS gene stability. Mechanistically, we demonstrate that the mitochondrial stress-dependent induction of CFS genes is mediated by ubiquitin-like protein 5 (UBL5), and that a UBL5-FANCD2 dependent axis regulates the mitochondrial UPR in human cells. We propose that FANCD2 coordinates nuclear and mitochondrial activities to prevent genome instability.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium azide, BioXtra
SKU
Pack Size
Availability
Price
Quantity
Sigma-Aldrich
Aphidicolin from Nigrospora sphaerica, ≥98% (HPLC), powder
SKU
Pack Size
Availability
Price
Quantity
Sigma-Aldrich
Carbonyl cyanide 3-chlorophenylhydrazone, ≥97% (TLC), powder
SKU
Pack Size
Availability
Price
Quantity
Sigma-Aldrich
ISRIB, ≥98% (HPLC)
SKU
Pack Size
Availability
Price
Quantity