Skip to Content
Merck
  • Organically modified titania nanoparticles for sustained drug release applications.

Organically modified titania nanoparticles for sustained drug release applications.

Journal of colloid and interface science (2015-06-21)
Komal Sethi, Indrajit Roy
ABSTRACT

In this paper, we report the synthesis, characterization of drug-doped organically modified titania nanoparticles, and their applications in sustained drug release. The drug-doped nanoparticles were synthesized in the hydrophobic core of oil-in-water microemulsion medium. Structural aspects obtained through TEM and FESEM depicted that organically modified titania nanoparticles are monodispersed with spherical morphology, with an average size of around 200 nm. Their polymorphic forms and porosity were determined using powder XRD and BET, respectively, which showed that they are present in the anatase form, with a surface area of 136.5 m(2)/g and pore-diameter of 5.23 nm. After synthesis and basic structural characterizations, optical properties were studied for both fluorophore and drug encapsulated nanoparticles. The results showed that though the optical properties of the fluorophore are partially diminished upon nanoencapsulation, it became more stable against chemical quenching. The nanoparticles showed pH-dependent drug release pattern. In vitro studies showed that the nanoparticles were efficiently uptaken by cells. Cell viability assay results showed that though the placebo nanoparticles are non-cytotoxic, the drug-doped nanoparticles show drug-induced toxicity. Therefore, such porous nanoparticles can be used in non-toxic drug delivery applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
Doxorubicin hydrochloride, suitable for fluorescence, 98.0-102.0% (HPLC)
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Doxorubicin hydrochloride, 98.0-102.0% (HPLC)
Sigma-Aldrich
1-Butanol, for molecular biology, ≥99%
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
1-Butanol, anhydrous, 99.8%
Sigma-Aldrich
Cyclopentadienyltitanium(IV) trichloride, 97%
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dioctyl sulfosuccinate sodium salt, ≥97%
Sigma-Aldrich
Docusate sodium salt, BioUltra, ≥99.0% (TLC)
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Butyl alcohol, natural, ≥99.5%, FCC, FG
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture