Skip to Content
Merck
  • Identification of novel dynamin-related protein 1 (Drp1) GTPase inhibitors: Therapeutic potential of Drpitor1 and Drpitor1a in cancer and cardiac ischemia-reperfusion injury.

Identification of novel dynamin-related protein 1 (Drp1) GTPase inhibitors: Therapeutic potential of Drpitor1 and Drpitor1a in cancer and cardiac ischemia-reperfusion injury.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology (2020-01-10)
Danchen Wu, Asish Dasgupta, Kuang-Hueih Chen, Monica Neuber-Hess, Jignesh Patel, Timothy E Hurst, Jeffrey D Mewburn, Patricia D A Lima, Elahe Alizadeh, Ashley Martin, Michael Wells, Victor Snieckus, Stephen L Archer
ABSTRACT

Mitochondrial fission is important in physiological processes, including coordination of mitochondrial and nuclear division during mitosis, and pathologic processes, such as the production of reactive oxygen species (ROS) during cardiac ischemia-reperfusion injury (IR). Mitochondrial fission is mainly mediated by dynamin-related protein 1 (Drp1), a large GTPase. The GTPase activity of Drp1 is essential for its fissogenic activity. Therefore, we aimed to identify Drp1 inhibitors and evaluate their anti-neoplastic and cardioprotective properties in five cancer cell lines (A549, SK-MES-1, SK-LU-1, SW 900, and MCF7) and an experimental cardiac IR injury model. Virtual screening of a chemical library revealed 17 compounds with high predicted affinity to the GTPase domain of Drp1. In silico screening identified an ellipticine compound, Drpitor1, as a putative, potent Drp1 inhibitor. We also synthesized a congener of Drpitor1 to remove the methoxymethyl group and reduce hydrolytic lability (Drpitor1a). Drpitor1 and Drpitor1a inhibited the GTPase activity of Drp1 without inhibiting the GTPase of dynamin 1. Drpitor1 and Drpitor1a have greater potency than the current standard Drp1 GTPase inhibitor, mdivi-1, (IC50 for mitochondrial fragmentation are 0.09, 0.06, and 10 μM, respectively). Both Drpitors reduced proliferation and induced apoptosis in cancer cells. Drpitor1a suppressed lung cancer tumor growth in a mouse xenograft model. Drpitor1a also inhibited mitochondrial ROS production, prevented mitochondrial fission, and improved right ventricular diastolic dysfunction during IR injury. In conclusion, Drpitors are useful tools for understanding mitochondrial dynamics and have therapeutic potential in treating cancer and cardiac IR injury.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dulbecco′s Modified Eagle′s Medium - high glucose, With 4500 mg/L glucose, L-glutamine, and sodium bicarbonate, without sodium pyruvate, liquid, sterile-filtered, suitable for cell culture
Millipore
Millex® hydrophilic PTFE syringe filter, pore size 0.2 μm, diam. 13 mm, sterile
Millipore
Millex® hydrophilic PTFE syringe filter, pore size 0.2 μm, diam. 25 mm, sterile
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Tetramethylrhodamine methyl ester perchlorate, ≥95%